thrift/lib/d/test/transport_test.d
Jake Farrell b95b0ffa72 THRIFT-1500: d programming language support
Client: D
Patch: David Nadlinger

D program language library and additions



git-svn-id: https://svn.apache.org/repos/asf/thrift/trunk@1304085 13f79535-47bb-0310-9956-ffa450edef68
2012-03-22 21:49:10 +00:00

804 lines
22 KiB
D
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* Exercises various transports, combined with the buffered/framed wrappers.
*
* Originally ported from the C++ version, with Windows support code added.
*/
module transport_test;
import core.atomic;
import core.time : Duration;
import core.thread : Thread;
import std.conv : to;
import std.datetime;
import std.exception : enforce;
static import std.file;
import std.getopt;
import std.random : rndGen, uniform, unpredictableSeed;
import std.socket;
import std.stdio;
import std.string;
import std.typetuple;
import thrift.transport.base;
import thrift.transport.buffered;
import thrift.transport.framed;
import thrift.transport.file;
import thrift.transport.http;
import thrift.transport.memory;
import thrift.transport.socket;
import thrift.transport.zlib;
/*
* Size generation helpers used to be able to run the same testing code
* with both constant and random total/chunk sizes.
*/
interface SizeGenerator {
size_t nextSize();
string toString();
}
class ConstantSizeGenerator : SizeGenerator {
this(size_t value) {
value_ = value;
}
override size_t nextSize() {
return value_;
}
override string toString() const {
return to!string(value_);
}
private:
size_t value_;
}
class RandomSizeGenerator : SizeGenerator {
this(size_t min, size_t max) {
min_ = min;
max_ = max;
}
override size_t nextSize() {
return uniform!"[]"(min_, max_);
}
override string toString() const {
return format("rand(%s, %s)", min_, max_);
}
size_t min() const @property {
return min_;
}
size_t max() const @property {
return max_;
}
private:
size_t min_;
size_t max_;
}
/*
* Classes to set up coupled transports
*/
/**
* Helper class to represent a coupled pair of transports.
*
* Data written to the output transport can be read from the input transport.
*
* This is used as the base class for the various coupled transport
* implementations. It shouldn't be used directly.
*/
class CoupledTransports(Transport) if (isTTransport!Transport) {
Transport input;
Transport output;
}
template isCoupledTransports(T) {
static if (is(T _ : CoupledTransports!U, U)) {
enum isCoupledTransports = true;
} else {
enum isCoupledTransports = false;
}
}
/**
* Helper template class for creating coupled transports that wrap
* another transport.
*/
class CoupledWrapperTransports(WrapperTransport, InnerCoupledTransports) if (
isTTransport!WrapperTransport && isCoupledTransports!InnerCoupledTransports
) : CoupledTransports!WrapperTransport {
this() {
inner_ = new InnerCoupledTransports();
if (inner_.input) {
input = new WrapperTransport(inner_.input);
}
if (inner_.output) {
output = new WrapperTransport(inner_.output);
}
}
~this() {
clear(inner_);
}
private:
InnerCoupledTransports inner_;
}
import thrift.internal.codegen : PApply;
alias PApply!(CoupledWrapperTransports, TBufferedTransport) CoupledBufferedTransports;
alias PApply!(CoupledWrapperTransports, TFramedTransport) CoupledFramedTransports;
alias PApply!(CoupledWrapperTransports, TZlibTransport) CoupledZlibTransports;
/**
* Coupled TMemoryBuffers.
*/
class CoupledMemoryBuffers : CoupledTransports!TMemoryBuffer {
this() {
buf = new TMemoryBuffer;
input = buf;
output = buf;
}
TMemoryBuffer buf;
}
/**
* Coupled TSockets.
*/
class CoupledSocketTransports : CoupledTransports!TSocket {
this() {
auto sockets = socketPair();
input = new TSocket(sockets[0]);
output = new TSocket(sockets[1]);
}
~this() {
input.close();
output.close();
}
}
/**
* Coupled TFileTransports
*/
class CoupledFileTransports : CoupledTransports!TTransport {
this() {
// We actually need the file name of the temp file here, so we can't just
// use the usual tempfile facilities.
do {
fileName_ = tmpDir ~ "/thrift.transport_test." ~ to!string(rndGen().front);
rndGen().popFront();
} while (std.file.exists(fileName_));
writefln("Using temp file: %s", fileName_);
auto writer = new TFileWriterTransport(fileName_);
writer.open();
output = writer;
// Wait until the file has been created.
writer.flush();
auto reader = new TFileReaderTransport(fileName_);
reader.open();
reader.readTimeout(dur!"msecs"(-1));
input = reader;
}
~this() {
input.close();
output.close();
std.file.remove(fileName_);
}
static string tmpDir;
private:
string fileName_;
}
/*
* Test functions
*/
/**
* Test interleaved write and read calls.
*
* Generates a buffer totalSize bytes long, then writes it to the transport,
* and verifies the written data can be read back correctly.
*
* Mode of operation:
* - call wChunkGenerator to figure out how large of a chunk to write
* - call wSizeGenerator to get the size for individual write() calls,
* and do this repeatedly until the entire chunk is written.
* - call rChunkGenerator to figure out how large of a chunk to read
* - call rSizeGenerator to get the size for individual read() calls,
* and do this repeatedly until the entire chunk is read.
* - repeat until the full buffer is written and read back,
* then compare the data read back against the original buffer
*
*
* - If any of the size generators return 0, this means to use the maximum
* possible size.
*
* - If maxOutstanding is non-zero, write chunk sizes will be chosen such that
* there are never more than maxOutstanding bytes waiting to be read back.
*/
void testReadWrite(CoupledTransports)(
size_t totalSize,
SizeGenerator wSizeGenerator,
SizeGenerator rSizeGenerator,
SizeGenerator wChunkGenerator,
SizeGenerator rChunkGenerator,
size_t maxOutstanding
) if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
auto wbuf = new ubyte[totalSize];
auto rbuf = new ubyte[totalSize];
// Store some data in wbuf.
foreach (i, ref b; wbuf) {
b = i & 0xff;
}
size_t totalWritten;
size_t totalRead;
while (totalRead < totalSize) {
// Determine how large a chunk of data to write.
auto wChunkSize = wChunkGenerator.nextSize();
if (wChunkSize == 0 || wChunkSize > totalSize - totalWritten) {
wChunkSize = totalSize - totalWritten;
}
// Make sure (totalWritten - totalRead) + wChunkSize is less than
// maxOutstanding.
if (maxOutstanding > 0 &&
wChunkSize > maxOutstanding - (totalWritten - totalRead)) {
wChunkSize = maxOutstanding - (totalWritten - totalRead);
}
// Write the chunk.
size_t chunkWritten = 0;
while (chunkWritten < wChunkSize) {
auto writeSize = wSizeGenerator.nextSize();
if (writeSize == 0 || writeSize > wChunkSize - chunkWritten) {
writeSize = wChunkSize - chunkWritten;
}
transports.output.write(wbuf[totalWritten .. totalWritten + writeSize]);
chunkWritten += writeSize;
totalWritten += writeSize;
}
// Flush the data, so it will be available in the read transport
// Don't flush if wChunkSize is 0. (This should only happen if
// totalWritten == totalSize already, and we're only reading now.)
if (wChunkSize > 0) {
transports.output.flush();
}
// Determine how large a chunk of data to read back.
auto rChunkSize = rChunkGenerator.nextSize();
if (rChunkSize == 0 || rChunkSize > totalWritten - totalRead) {
rChunkSize = totalWritten - totalRead;
}
// Read the chunk.
size_t chunkRead;
while (chunkRead < rChunkSize) {
auto readSize = rSizeGenerator.nextSize();
if (readSize == 0 || readSize > rChunkSize - chunkRead) {
readSize = rChunkSize - chunkRead;
}
size_t bytesRead;
try {
bytesRead = transports.input.read(
rbuf[totalRead .. totalRead + readSize]);
} catch (TTransportException e) {
throw new Exception(format(`read(pos = %s, size = %s) threw ` ~
`exception "%s"; written so far: %s/%s bytes`, totalRead, readSize,
e.msg, totalWritten, totalSize));
}
enforce(bytesRead > 0, format(`read(pos = %s, size = %s) returned %s; ` ~
`written so far: %s/%s bytes`, totalRead, readSize, bytesRead,
totalWritten, totalSize));
chunkRead += bytesRead;
totalRead += bytesRead;
}
}
// make sure the data read back is identical to the data written
if (rbuf != wbuf) {
stderr.writefln("%s vs. %s", wbuf[$ - 4 .. $], rbuf[$ - 4 .. $]);
stderr.writefln("rbuf: %s vs. wbuf: %s", rbuf.length, wbuf.length);
}
enforce(rbuf == wbuf);
}
void testReadPartAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[10] writeBuf = 'a';
ubyte[10] readBuf;
// Attemping to read 10 bytes when only 9 are available should return 9
// immediately.
transports.output.write(writeBuf[0 .. 9]);
transports.output.flush();
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
auto bytesRead = transports.input.read(readBuf);
enforce(t.fired == 0);
enforce(bytesRead == 9);
}
void testReadPartialMidframe(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[13] writeBuf = 'a';
ubyte[14] readBuf;
// Attempt to read 10 bytes, when only 9 are available, but after we have
// already read part of the data that is available. This exercises a
// different code path for several of the transports.
//
// For transports that add their own framing (e.g., TFramedTransport and
// TFileTransport), the two flush calls break up the data in to a 10 byte
// frame and a 3 byte frame. The first read then puts us partway through the
// first frame, and then we attempt to read past the end of that frame, and
// through the next frame, too.
//
// For buffered transports that perform read-ahead (e.g.,
// TBufferedTransport), the read-ahead will most likely see all 13 bytes
// written on the first read. The next read will then attempt to read past
// the end of the read-ahead buffer.
//
// Flush 10 bytes, then 3 bytes. This creates 2 separate frames for
// transports that track framing internally.
transports.output.write(writeBuf[0 .. 10]);
transports.output.flush();
transports.output.write(writeBuf[10 .. 13]);
transports.output.flush();
// Now read 4 bytes, so that we are partway through the written data.
auto bytesRead = transports.input.read(readBuf[0 .. 4]);
enforce(bytesRead == 4);
// Now attempt to read 10 bytes. Only 9 more are available.
//
// We should be able to get all 9 bytes, but it might take multiple read
// calls, since it is valid for read() to return fewer bytes than requested.
// (Most transports do immediately return 9 bytes, but the framing transports
// tend to only return to the end of the current frame, which is 6 bytes in
// this case.)
size_t totalRead = 0;
while (totalRead < 9) {
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
bytesRead = transports.input.read(readBuf[4 + totalRead .. 14]);
enforce(t.fired == 0);
enforce(bytesRead > 0);
totalRead += bytesRead;
enforce(totalRead <= 9);
}
enforce(totalRead == 9);
}
void testBorrowPartAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[9] writeBuf = 'a';
ubyte[10] readBuf;
// Attemping to borrow 10 bytes when only 9 are available should return NULL
// immediately.
transports.output.write(writeBuf);
transports.output.flush();
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
auto borrowLen = readBuf.length;
auto borrowedBuf = transports.input.borrow(readBuf.ptr, borrowLen);
enforce(t.fired == 0);
enforce(borrowedBuf is null);
}
void testReadNoneAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
// Attempting to read when no data is available should either block until
// some data is available, or fail immediately. (e.g., TSocket blocks,
// TMemoryBuffer just fails.)
//
// If the transport blocks, it should succeed once some data is available,
// even if less than the amount requested becomes available.
ubyte[10] readBuf;
auto t = Trigger(dur!"seconds"(1), transports.output, 2);
t.add(dur!"seconds"(1), transports.output, 8);
auto bytesRead = transports.input.read(readBuf);
if (bytesRead == 0) {
enforce(t.fired == 0);
} else {
enforce(t.fired == 1);
enforce(bytesRead == 2);
}
}
void testBorrowNoneAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[16] writeBuf = 'a';
// Attempting to borrow when no data is available should fail immediately
auto t = Trigger(dur!"seconds"(1), transports.output, 10);
auto borrowLen = 10;
auto borrowedBuf = transports.input.borrow(null, borrowLen);
enforce(borrowedBuf is null);
enforce(t.fired == 0);
}
void doRwTest(CoupledTransports)(
size_t totalSize,
SizeGenerator wSizeGen,
SizeGenerator rSizeGen,
SizeGenerator wChunkSizeGen = new ConstantSizeGenerator(0),
SizeGenerator rChunkSizeGen = new ConstantSizeGenerator(0),
size_t maxOutstanding = 0
) if (
isCoupledTransports!CoupledTransports
) {
totalSize = cast(size_t)(totalSize * g_sizeMultiplier);
scope(failure) {
writefln("Test failed for %s: testReadWrite(%s, %s, %s, %s, %s, %s)",
CoupledTransports.stringof, totalSize, wSizeGen, rSizeGen,
wChunkSizeGen, rChunkSizeGen, maxOutstanding);
}
testReadWrite!CoupledTransports(totalSize, wSizeGen, rSizeGen,
wChunkSizeGen, rChunkSizeGen, maxOutstanding);
}
void doBlockingTest(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
void writeFailure(string name) {
writefln("Test failed for %s: %s()", CoupledTransports.stringof, name);
}
{
scope(failure) writeFailure("testReadPartAvailable");
testReadPartAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testReadPartialMidframe");
testReadPartialMidframe!CoupledTransports();
}
{
scope(failure) writeFailure("testReadNoneAvaliable");
testReadNoneAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testBorrowPartAvailable");
testBorrowPartAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testBorrowNoneAvailable");
testBorrowNoneAvailable!CoupledTransports();
}
}
SizeGenerator getGenerator(T)(T t) {
static if (is(T : SizeGenerator)) {
return t;
} else {
return new ConstantSizeGenerator(t);
}
}
template WrappedTransports(T) if (isCoupledTransports!T) {
alias TypeTuple!(
T,
CoupledBufferedTransports!T,
CoupledFramedTransports!T,
CoupledZlibTransports!T
) WrappedTransports;
}
void testRw(C, R, S)(
size_t totalSize,
R wSize,
S rSize
) if (
isCoupledTransports!C && is(typeof(getGenerator(wSize))) &&
is(typeof(getGenerator(rSize)))
) {
testRw!C(totalSize, wSize, rSize, 0, 0, 0);
}
void testRw(C, R, S, T, U)(
size_t totalSize,
R wSize,
S rSize,
T wChunkSize,
U rChunkSize,
size_t maxOutstanding = 0
) if (
isCoupledTransports!C && is(typeof(getGenerator(wSize))) &&
is(typeof(getGenerator(rSize))) && is(typeof(getGenerator(wChunkSize))) &&
is(typeof(getGenerator(rChunkSize)))
) {
foreach (T; WrappedTransports!C) {
doRwTest!T(
totalSize,
getGenerator(wSize),
getGenerator(rSize),
getGenerator(wChunkSize),
getGenerator(rChunkSize),
maxOutstanding
);
}
}
void testBlocking(C)() if (isCoupledTransports!C) {
foreach (T; WrappedTransports!C) {
doBlockingTest!T();
}
}
// A quick hack, for the sake of brevity…
float g_sizeMultiplier = 1;
version (Posix) {
immutable defaultTempDir = "/tmp";
} else version (Windows) {
import core.sys.windows.windows;
extern(Windows) DWORD GetTempPathA(DWORD nBufferLength, LPTSTR lpBuffer);
string defaultTempDir() @property {
char[MAX_PATH + 1] dir;
enforce(GetTempPathA(dir.length, dir.ptr));
return to!string(dir.ptr)[0 .. $ - 1];
}
} else static assert(false);
void main(string[] args) {
int seed = unpredictableSeed();
string tmpDir = defaultTempDir;
getopt(args, "seed", &seed, "size-multiplier", &g_sizeMultiplier,
"tmp-dir", &tmpDir);
enforce(g_sizeMultiplier >= 0, "Size multiplier must not be negative.");
writefln("Using seed: %s", seed);
rndGen().seed(seed);
CoupledFileTransports.tmpDir = tmpDir;
auto rand4k = new RandomSizeGenerator(1, 4096);
/*
* We do the basically the same set of tests for each transport type,
* although we tweak the parameters in some places.
*/
// TMemoryBuffer tests
testRw!CoupledMemoryBuffers(1024 * 1024, 0, 0);
testRw!CoupledMemoryBuffers(1024 * 256, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, 167, 163);
testRw!CoupledMemoryBuffers(1024 * 16, 1, 1);
testRw!CoupledMemoryBuffers(1024 * 256, 0, 0, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, rand4k, rand4k, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, 167, 163, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 16, 1, 1, rand4k, rand4k);
testBlocking!CoupledMemoryBuffers();
// TSocket tests
enum socketMaxOutstanding = 4096;
testRw!CoupledSocketTransports(1024 * 1024, 0, 0,
0, 0, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, rand4k, rand4k,
0, 0, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, 167, 163,
0, 0, socketMaxOutstanding);
// Doh. Apparently writing to a socket has some additional overhead for
// each send() call. If we have more than ~400 outstanding 1-byte write
// requests, additional send() calls start blocking.
testRw!CoupledSocketTransports(1024 * 16, 1, 1,
0, 0, 400);
testRw!CoupledSocketTransports(1024 * 256, 0, 0,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, rand4k, rand4k,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, 167, 163,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 16, 1, 1,
rand4k, rand4k, 400);
testBlocking!CoupledSocketTransports();
// File transport tests.
// Cannot write more than the frame size at once.
enum maxWriteAtOnce = 1024 * 1024 * 16 - 4;
testRw!CoupledFileTransports(1024 * 1024, maxWriteAtOnce, 0);
testRw!CoupledFileTransports(1024 * 256, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, 167, 163);
testRw!CoupledFileTransports(1024 * 16, 1, 1);
testRw!CoupledFileTransports(1024 * 256, 0, 0, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, rand4k, rand4k, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, 167, 163, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 16, 1, 1, rand4k, rand4k);
testBlocking!CoupledFileTransports();
}
/*
* Timer handling code for use in tests that check the transport blocking
* semantics.
*
* The implementation has been hacked together in a hurry and wastes a lot of
* threads, but speed should not be the concern here.
*/
struct Trigger {
this(Duration timeout, TTransport transport, size_t writeLength) {
mutex_ = new Mutex;
cancelCondition_ = new Condition(mutex_);
info_ = new Info(timeout, transport, writeLength);
startThread();
}
~this() {
synchronized (mutex_) {
info_ = null;
cancelCondition_.notifyAll();
}
if (thread_) thread_.join();
}
@disable this(this) { assert(0); }
void add(Duration timeout, TTransport transport, size_t writeLength) {
synchronized (mutex_) {
auto info = new Info(timeout, transport, writeLength);
if (info_) {
auto prev = info_;
while (prev.next) prev = prev.next;
prev.next = info;
} else {
info_ = info;
startThread();
}
}
}
@property short fired() {
return atomicLoad(fired_);
}
private:
void timerThread() {
// KLUDGE: Make sure the std.concurrency mbox is initialized on the timer
// thread to be able to unblock the file transport.
import std.concurrency;
thisTid;
synchronized (mutex_) {
while (info_) {
auto cancelled = cancelCondition_.wait(info_.timeout);
if (cancelled) {
info_ = null;
break;
}
atomicOp!"+="(fired_, 1);
// Write some data to the transport to unblock it.
auto buf = new ubyte[info_.writeLength];
buf[] = 'b';
info_.transport.write(buf);
info_.transport.flush();
info_ = info_.next;
}
}
thread_ = null;
}
void startThread() {
thread_ = new Thread(&timerThread);
thread_.start();
}
struct Info {
this(Duration timeout, TTransport transport, size_t writeLength) {
this.timeout = timeout;
this.transport = transport;
this.writeLength = writeLength;
}
Duration timeout;
TTransport transport;
size_t writeLength;
Info* next;
}
Info* info_;
Thread thread_;
shared short fired_;
import core.sync.mutex;
Mutex mutex_;
import core.sync.condition;
Condition cancelCondition_;
}