salt/conf/minion.template
Grier Johnson 3a3db83012 Adding in append_domain config values. Allows for a harcoded domain to
be appended to minions.  This helps with systems like solaris who, by
default, give back the short name when you ask for socket.getfqdn()
2012-03-14 18:35:07 -07:00

221 lines
8.2 KiB
Plaintext

# DO NOT MODIFY THIS FILE. Copy it to: /etc/salt/minion
##### Primary configuration settings #####
##########################################
# Set the location of the salt master server, if the master server cannot be
# resolved, then the minion will fail to start.
#master: salt
# Set the port used by the master reply and authentication server
#master_port: 4506
# The user to run salt
#user: root
# The root directory prepended to these options: pki_dir, cachedir, log_file.
#root_dir: /
# The directory to store the pki information in
#pki_dir: /etc/salt/pki
# Explicitly declare the id for this minion to use, if left commented the id
# will be the hostname as returned by the python call: socket.getfqdn()
# Since salt uses detached ids it is possible to run multiple minions on the
# same machine but with different ids, this can be useful for salt compute
# clusters.
#id:
# Append a domain to a hostname in the event that it does not exist. This is
# usefule for systems where socket.getfqdn() does not actually result in a
# FQDN (for instance, Solaris).
#append_domain:
# If the the connection to the server is interrupted, the minion will
# attempt to reconnect. sub_timeout allows you to control the rate
# of reconnection attempts (in seconds). To disable reconnects, set
# this value to 0.
#sub_timeout: 60
# Where cache data goes
#cachedir: /var/cache/salt
# The minion can locally cache the return data from jobs sent to it, this
# can be a good way to keep track of jobs the minion has executed
# (on the minion side). By default this feature is disabled, to enable
# set cache_jobs to True
#cache_jobs: False
# When waiting for a master to accept the minion's public key, salt will
# continuously attempt to reconnect until successful. This is the time, in
# seconds, between those reconnection attempts.
#acceptance_wait_time = 10
# When healing a dns_check is run, this is to make sure that the originally
# resolved dns has not changed, if this is something that does not happen in
# your environment then set this value to False.
#dns_check: True
##### Minion module management #####
##########################################
# Disable specific modules. This allows the admin to limit the level of
# access the master has to the minion
#disable_modules: [cmd,test]
#disable_returners: []
#
# Modules can be loaded from arbitrary paths. This enables the easy deployment
# of third party modules. Modules for returners and minions can be loaded.
# Specify a list of extra directories to search for minion modules and
# returners. These paths must be fully qualified!
#module_dirs: []
#returner_dirs: []
#states_dirs: []
#render_dirs: []
#
# A module provider can be statically overwritten or extended for the minion
# via the providers option, in this case the default module will be
# overwritten by the specified module. In this example the pkg module will
# be provided by the yumpkg5 module instead of the system default.
#
# providers:
# pkg: yumpkg5
#
# Enable Cython modules searching and loading. (Default: False)
#cython_enable: False
##### State Management Settings #####
###########################################
# The state management system executes all of the state templates on the minion
# to enable more granular control of system state management. The type of
# template and serialization used for state management needs to be configured
# on the minion, the default renderer is yaml_jinja. This is a yaml file
# rendered from a jinja template, the available options are:
# yaml_jinja
# yaml_mako
# json_jinja
# json_mako
#
#renderer: yaml_jinja
#
# state_verbose allows for the data returned from the minion to be more
# verbose. Normaly only states that fail or states that have changes are
# returned, but setting state_verbose to True will return all states that
# were checked
#state_verbose: False
#
# autoload_dynamic_modules Turns on automatic loading of modules found in the
# environments on the master. This is turned on by default, to turn of
# autoloading modules when states run set this value to False
#autoload_dynamic_modules: True
#
# clean_dynamic_modules keeps the dynamic modules on the minion in sync with
# the dynamic modules on the master, this means that if a dynamic module is
# not on the master it will be deleted from the minion. By default this is
# enabled and can be disabled by changing this value to False
#clean_dynamic_modules: True
#
# Normally the minion is not isolated to any single environment on the master
# when running states, but the environment can be isolated on the minion side
# by statically setting it. Remember that the recommended way to manage
# environments is to issolate via the top file.
#environment: None
#
# If using the local file directory, then the state top file name needs to be
# defined, by default this is top.sls.
#state_top: top.sls
##### File Directory Settings #####
##########################################
# The Salt Minion can redirect all file server operations to a local directory,
# this allows for the same state tree that is on the master to be used if
# coppied completely onto the minion. This is a literal copy of the settings on
# the master but used to reference a local directory on the minion.
# Set the file client, the client defaults to looking on the master server for
# files, but can be directed to look at the local file directory setting
# defined below by setting it to local.
#file_client: remote
# The file directory works on environments passed to the minion, each environment
# can have multiple root directories, the subdirectories in the multiple file
# roots cannot match, otherwise the downloaded files will not be able to be
# reliably ensured. A base environment is required to house the top file.
# Example:
# file_roots:
# base:
# - /srv/salt/
# dev:
# - /srv/salt/dev/services
# - /srv/salt/dev/states
# prod:
# - /srv/salt/prod/services
# - /srv/salt/prod/states
#
# Default:
#file_roots:
# base:
# - /srv/salt
# The hash_type is the hash to use when discovering the hash of a file in
# the minion directory, the default is md5, but sha1, sha224, sha256, sha384
# and sha512 are also supported.
#hash_type: md5
# The Salt pillar is searched for locally if file_client is set to local. If
# this is the case, and pillar data is defined, then the pillar_roots need to
# also be configured on the minion:
#pillar_roots:
# base:
# - /srv/pillar
###### Security settings #####
###########################################
# Enable "open mode", this mode still maintains encryption, but turns off
# authentication, this is only intended for highly secure environments or for
# the situation where your keys end up in a bad state. If you run in open mode
# you do so at your own risk!
#open_mode: False
###### Thread settings #####
###########################################
# Disable multiprocessing support, by default when a minion receives a
# publication a new process is spawned and the command is executed therein.
#multiprocessing: True
###### Logging settings #####
###########################################
# The location of the minion log file
#log_file: /var/log/salt/minion
#
# The level of messages to send to the log file.
# One of 'info', 'quiet', 'critical', 'error', 'debug', 'warning'.
# Default: 'warning'
#log_level: warning
#
# Logger levels can be used to tweak specific loggers logging levels.
# For example, if you want to have the salt library at the 'warning' level,
# but you still wish to have 'salt.modules' at the 'debug' level:
# log_granular_levels: {
# 'salt': 'warning',
# 'salt.modules': 'debug'
# }
#
#log_granular_levels: {}
###### Module configuration #####
###########################################
# Salt allows for modules to be passed arbitrary configuration data, any data
# passed here in valid yaml format will be passed on to the salt minion modules
# for use. It is STRONGLY recommended that a naming convention be used in which
# the module name is followed by a . and then the value. Also, all top level
# data must be applied via the yaml dict construct, some examples:
#
# A simple value for the test module:
#test.foo: foo
#
# A list for the test module:
#test.bar: [baz,quo]
#
# A dict for the test module:
#test.baz: {spam: sausage, cheese: bread}