riak_test/intercepts/intercept.erl
2015-09-11 17:06:34 +01:00

393 lines
14 KiB
Erlang

%% -------------------------------------------------------------------
%%
%% Copyright (c) 2015 Basho Technologies, Inc.
%%
%% This file is provided to you under the Apache License,
%% Version 2.0 (the "License"); you may not use this file
%% except in compliance with the License. You may obtain
%% a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing,
%% software distributed under the License is distributed on an
%% "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
%% KIND, either express or implied. See the License for the
%% specific language governing permissions and limitations
%% under the License.
%%
%%-------------------------------------------------------------------
-module(intercept).
%% Export explicit API but also send compile directive to export all
%% because some of these private functions are useful in their own
%% right.
-export([add/3, add/4]).
-compile(export_all).
-type abstract_code() :: term().
-type form() :: term().
-type proplist(K, V) :: proplists:proplist(K, V).
-type fun_name() :: atom().
-type fun_type() :: fun_name() | tuple().
-type target_fun() :: {fun_name(), arity()}.
-type intercept_fun() :: fun_type().
-type mapping() :: proplist(target_fun(), intercept_fun()).
-type form_mod() :: fun((form()) -> form()).
-type code_mod() :: fun((form(), abstract_code()) -> abstract_code()).
%% The "original" is the `Target' module with the suffix `_orig'. It
%% is where original code for the `Target' module resides after
%% intercepts are added.
-define(ORIGINAL(Mod), list_to_atom(atom_to_list(Mod) ++ "_orig")).
-define(FAKE_LINE_NO,1).
%% @doc Add intercepts against the `Target' module.
%%
%% `Target' - The module on which to intercept calls.
%% E.g. `hashtree'.
%%
%% `Intercept' - The module containing intercept definitions.
%% E.g. `hashtree_intercepts'
%%
%% `Mapping' - The mapping from target functions to intercept
%% functions.
%%
%% E.g. `[{{update_perform,2}, sleep_update_perform}]'
-spec add(module(), module(), mapping()) -> ok.
add(Target, Intercept, Mapping, OutDir) ->
Original = ?ORIGINAL(Target),
TargetAC = get_abstract_code(Target),
ProxyAC = make_proxy_abstract_code(Target, Intercept, Mapping,
Original, TargetAC),
OrigAC = make_orig_abstract_code(Target, Original, TargetAC),
ok = compile_and_load(Original, OrigAC, OutDir),
ok = compile_and_load(Target, ProxyAC, OutDir).
add(Target, Intercept, Mapping) ->
add(Target, Intercept, Mapping, undefined).
%% @private
%%
%% @doc Compile the abstract code `AC' and load it into the code server.
-spec compile_and_load(module(), abstract_code(), undefined | string()) -> ok.
compile_and_load(Module, AC, OutDir) ->
{ok, Module, Bin} = compile:forms(AC,[debug_info]),
ModStr = atom_to_list(Module),
_ = is_list(OutDir) andalso
file:write_file(filename:join(OutDir, ModStr ++ ".beam"), Bin),
{module, Module} = code:load_binary(Module, ModStr, Bin),
ok.
%% @private
-spec make_orig_abstract_code(module(), module(), abstract_code()) ->
abstract_code().
make_orig_abstract_code(Target, OrigName, TargetAC) ->
export_all(move_all_funs(Target, change_module_name(OrigName, TargetAC))).
%% @private
%%
%% @doc Make the abstract code for the proxy module. The proxy module
%% sits in place of the original module and decides whether to
%% forward to the `Intercept' or the `Original' depending on the
%% `Mapping'.
-spec make_proxy_abstract_code(module(), module(), mapping(),
module(), abstract_code()) ->
abstract_code().
make_proxy_abstract_code(Target, Intercept, Mapping, Original, TargetAC) ->
AC1 = forward_all(Original, TargetAC),
AC2 = export_all(change_module_name(Target, AC1)),
apply_intercepts(AC2, Intercept, Mapping).
%% @private
%%
%% @doc Apply intercepts to the abstract code `AC' based on `Mapping'.
-spec apply_intercepts(abstract_code(), module(), mapping()) -> abstract_code().
apply_intercepts(AC, Intercept, Mapping) ->
apply_to_funs(mapping_fun(Intercept, Mapping), AC).
%% @private
%%
%% @doc Return a form modifier function that uses `Mapping' to
%% determine if a function should be modified to forward to the
%% `Intercept' module.
-spec mapping_fun(module(), proplists:proplist()) -> form_mod().
mapping_fun(Intercept, Mapping) ->
fun(Form) ->
Key = {fun_name(Form), fun_arity(Form)},
case proplists:get_value(Key, Mapping, '$none') of
'$none' ->
Form;
InterceptFun ->
forward(Intercept, InterceptFun, Form)
end
end.
%% @private
%%
%% @doc Modify the abstract code `AC' to forward all function calls to
%% `Module' and move the original definitions under
%% `<function_name>_orig'.
-spec move_all_funs(module(), abstract_code()) -> abstract_code().
move_all_funs(Module, AC) ->
lists:reverse(lists:foldl(move_all_funs(Module), [], AC)).
%% @private
%%
%% @doc Return a function which folds over the abstract code of a
%% module, represented by `Form'. Every function is modified to
%% forward to `ModuleName' and it's original definition is stored
%% under `<function_name>_orig'.
-spec move_all_funs(module()) -> code_mod().
move_all_funs(ModuleName) ->
fun(Form, NewAC) ->
case is_fun(Form) of
false ->
[Form|NewAC];
true ->
%% Move current function code under different name
Name = fun_name(Form),
OrigForm = setelement(3, Form, ?ORIGINAL(Name)),
%% Modify original function to forward to `ModuleName'
FwdForm = forward(ModuleName, Name, Form),
[FwdForm,OrigForm|NewAC]
end
end.
%% @private
%%
%% @doc Modify all function definitions in the abstract code `AC' to
%% forward to `Module:FunName_orig'.
-spec forward_all(module(), abstract_code()) -> abstract_code().
forward_all(Module, AC) ->
F = fun(Form) ->
forward(Module, ?ORIGINAL(fun_name(Form)), Form)
end,
apply_to_funs(F, AC).
%% @private
%%
%% @doc Modify the function `Form' to forward to `Module:Fun'.
-spec forward(module(), fun_type(), form()) -> form().
forward(Module, Fun, Form) ->
Clause = hd(fun_clauses(Form)),
Args = clause_args(Clause),
NumArgs = length(Args),
GenArgs = [{var,?FAKE_LINE_NO,list_to_atom("Arg" ++ integer_to_list(I))}
|| I <- lists:seq(1,NumArgs)],
Clause2 = clause_set_args(Clause, GenArgs),
Clause3 = clause_clear_guards(Clause2),
Body = [{call, 1,
case Fun of
Fun when is_atom(Fun) ->
{remote,1,{atom,1,Module},{atom,1,Fun}};
%% If Fun is a tuple, it's a pair comprising a list of
%% local variables to capture and an anonymous function
%% that's already in the abstract format. The anonymous
%% function uses the local variables.
{FreeVars, AnonFun} ->
generate_fun_wrapper(FreeVars, AnonFun, NumArgs)
end, GenArgs}],
Clause4 = clause_set_body(Clause3, Body),
fun_set_clauses(Form, [Clause4]).
change_module_name(NewName, AC) ->
lists:keyreplace(module, 3, AC, {attribute,1,module,NewName}).
%% @private
%%
%% @doc Generate an anonymous function wrapper that sets up calls for an
%% anonymous function interceptor.
%%
%% This function returns the abstract code equivalent of the following
%% code. If you change this code, please update this comment.
%%
%% fun(__A0_, __A1_, ...) ->
%% __Bindings0_ = lists:foldl(fun({__Bn_,__Bv_},__Acc_) ->
%% erl_eval:add_binding(__Bn_,__Bv_,__Acc_)
%% end,
%% erl_eval:new_bindings(),
%% <free vars from generate_freevars>),
%% __Bindings = lists:foldl(fun({{var,_,__Vn_},__V_},__Acc) ->
%% erl_eval:add_binding(__Vn_,__V_,__Acc_)
%% end,
%% __Bindings0_,
%% <__A0_ etc. args from generate_freevars>),
%% erl_eval:expr(<abstract code for AnonFun(__A0_, __A1_, ...)>,
%% __Bindings_, none, none, value).
%%
generate_fun_wrapper(FreeVars, AnonFun, NumArgs) ->
L = ?FAKE_LINE_NO,
Args = [{var,L,list_to_atom(lists:flatten(["__A",Var+$0],"_"))} ||
Var <- lists:seq(1, NumArgs)],
{'fun',L,
{clauses,
[{clause,L,Args,[],
[{match,L+1,
{var,L+1,'__Bindings0_'},
{call,L+1,
{remote,L+1,{atom,L+1,lists},{atom,L+1,foldl}},
[{'fun',L+1,
{clauses,
[{clause,L+1,
[{tuple,L+1,[{var,L+1,'__Bn_'},{var,L+1,'__Bv_'}]},
{var,L+1,'__Acc_'}],
[],
[{call,L+2,
{remote,L+2,
{atom,L+2,erl_eval},
{atom,L+2,add_binding}},
[{var,L+2,'__Bn_'},{var,L+2,'__Bv_'},{var,L+2,'__Acc_'}]}]
}]}},
{call,L+3,
{remote,L+3,{atom,L+3,erl_eval},{atom,L+3,new_bindings}},[]},
generate_freevars(FreeVars,L+3)]}},
{match,L+4,
{var,L+4,'__Bindings_'},
{call,L+4,
{remote,L+4,{atom,L+4,lists},{atom,L+4,foldl}},
[{'fun',L+4,
{clauses,
[{clause,L+4,
[{tuple,L+4,[{tuple,L+4,[{atom,L+4,var},{var,L+4,'_'},
{var,L+4,'__Vn_'}]},{var,L+4,'__V_'}]},
{var,L+4,'__Acc_'}],
[],
[{call,L+5,
{remote,L+5,
{atom,L+5,erl_eval},
{atom,L+5,add_binding}},
[{var,L+5,'__Vn_'},{var,L+5,'__V_'},{var,L+5,'__Acc_'}]}]
}]}},
{var,L+6,'__Bindings0_'},
lists:foldl(fun(V,Acc) ->
AV = erl_parse:abstract(V),
{cons,L+6,{tuple,L+6,[AV,V]},Acc}
end,{nil,L+6},Args)]}},
{call,L+7,
{remote,L+7,
{atom,L+7,erl_eval},
{atom,L+7,expr}},
[erl_parse:abstract({call,L+7,AnonFun,
[{var,L+7,V} || {var,_,V} <- Args]},L+7),
{var,L+7,'__Bindings_'},
{atom,L+7,none},
{atom,L+7,none},
{atom,L+7,value}]}]}]}}.
%% @private
%%
%% @doc Convert generate_fun_wrapper freevars to abstract code
generate_freevars([], L) ->
{nil,L};
generate_freevars([FreeVar|FreeVars], L) ->
{cons,L,
generate_freevar(FreeVar,L),
generate_freevars(FreeVars,L)}.
%% @private
%%
%% @doc Convert one freevar to abstract code
%%
%% This returns an abstract format tuple representing a freevar as
%% {VarName, VarValue}. For function values we check their env for their
%% own freevars, but if no env is available, we raise an error. Pids,
%% ports, and references have no abstract format, so they are first
%% converted to binaries and the abstract format of the binary is used
%% instead. Their abstract format values generated here convert them back
%% from binaries to terms when accessed.
generate_freevar({Name,Var},L) when is_function(Var) ->
{env, Env} = erlang:fun_info(Var, env),
case Env of
[] ->
error({badarg, Var});
[FreeVars,_,_,Clauses] ->
{arity, Arity} = erlang:fun_info(Var, arity),
AnonFun = {'fun',L,{clauses,Clauses}},
{tuple,L,
[{atom,L,Name},
generate_fun_wrapper(FreeVars, AnonFun, Arity)]}
end;
generate_freevar({Name,Var}, L)
when is_pid(Var); is_port(Var); is_reference(Var) ->
NVar = term_to_binary(Var),
{tuple,L,
[{atom,L,Name},
{call,L,
{remote,L,{atom,L,erlang},{atom,L,binary_to_term}},
[erl_parse:abstract(NVar)]}]};
generate_freevar(NameVar, L) ->
erl_parse:abstract(NameVar,L).
%% @private
%%
%% @doc Add the `export_all' compile directive to the abstract code `AC'.
export_all(AC) ->
[A,B|Rest] = AC,
[A,B,{attribute,2,compile,export_all}|Rest].
%% @private
%%
%% @doc Apply the form modify `F' to all forms in `AC' that are
%% function definitions.
-spec apply_to_funs(form_mod(), abstract_code()) -> abstract_code().
apply_to_funs(F, AC) ->
F2 = apply_if_fun_def(F),
lists:map(F2, AC).
%% @private
%%
%% @doc Get the abstract code for `Module'. This function assumes
%% code is compiled with `debug_info'.
-spec get_abstract_code(module()) -> abstract_code().
get_abstract_code(Module) ->
{_, Bin, _} = code:get_object_code(Module),
{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(Bin, [abstract_code]),
AC.
%% @private
apply_if_fun_def(Fun) ->
fun(Form) when element(1, Form) == function -> Fun(Form);
(Form) -> Form
end.
%% @private
is_fun(Form) ->
element(1, Form) == function.
%% @private
clause_args(Form) ->
element(3, Form).
%% @private
clause_set_args(Form, Args) ->
setelement(3, Form, Args).
%% @private
clause_clear_guards(Form) ->
setelement(4, Form, []).
%% @private
clause_set_body(Form, Body) ->
setelement(5, Form, Body).
%% @private
fun_arity(Form) ->
element(4, Form).
%% @private
fun_clauses(Form) ->
element(5, Form).
%% @private
fun_set_clauses(Form, Clauses) ->
setelement(5, Form, Clauses).
%% @private
fun_name(Form) ->
element(3, Form).