mirror of
https://github.com/valitydev/grafanalib.git
synced 2024-11-06 10:15:24 +00:00
Python library for building Grafana dashboards
docs | ||
gfdatasource | ||
grafanalib | ||
tools | ||
.gitignore | ||
CHANGELOG.rst | ||
circle.yml | ||
dev-requirements.txt | ||
LICENSE | ||
Makefile | ||
README.rst | ||
setup.py |
========== grafanalib ========== .. image:: https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield :target: https://circleci.com/gh/weaveworks/grafanalib Do you like `Grafana <http://grafana.org/>`_ but wish you could version your dashboard configuration? Do you find yourself repeating common patterns? If so, grafanalib is for you. grafanalib lets you generate Grafana dashboards from simple Python scripts. Writing dashboards ================== The following will configure a dashboard with a single row, with one QPS graph broken down by status code and another latency graph showing median and 99th percentile latency: .. code-block:: python import itertools from grafanalib.core import * GRAPH_ID = itertools.count(1) dashboard = Dashboard( title="Frontend Stats", rows=[ Row(panels=[ Graph( title="Frontend QPS", dataSource='My Prometheus', targets=[ Target( expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))', legendFormat="1xx", refId='A', ), Target( expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))', legendFormat="2xx", refId='B', ), Target( expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))', legendFormat="3xx", refId='C', ), Target( expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))', legendFormat="4xx", refId='D', ), Target( expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))', legendFormat="5xx", refId='E', ), ], id=next(GRAPH_ID), yAxes=[ YAxis(format=OPS_FORMAT), YAxis(format=SHORT_FORMAT), ], ), Graph( title="Frontend latency", dataSource='My Prometheus', targets=[ Target( expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))', legendFormat="0.5 quantile", refId='A', ), Target( expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))', legendFormat="0.99 quantile", refId='B', ), ], id=next(GRAPH_ID), yAxes=[ YAxis( format=SECONDS_FORMAT, ), YAxis( format=SHORT_FORMAT, show=False, ) ], ), ]), ], ) There is a fair bit of repetition here, but once you figure out what works for your needs, you can factor that out. See `our Weave-specific customizations <grafanalib/weave.py>`_ for inspiration. Generating dashboards ===================== If you save the above as ``frontend.dashboard.py`` (the suffix must be ``.dashboard.py``), you can then generate the JSON dashboard with: .. code-block:: console $ generate-dashboard -o frontend.json frontend.dashboard.py Installation ============ grafanalib is just a Python package, so: .. code-block:: console $ pip install grafanalib Support ======= This library is in its very early stages. We'll probably make changes that break backwards compatibility, although we'll try hard not to. grafanalib works with Python 3.4 and 3.5.