Python library for building Grafana dashboards
Go to file
2019-07-22 12:19:58 +01:00
.circleci Update docker client used in build 2019-06-03 16:26:05 +00:00
.github Contribution guidelines (#103) 2018-01-05 11:24:08 +00:00
docs Add support for Elasticsearch datasource #99 (#100) 2018-02-19 14:28:30 +00:00
gfdatasource Add org.opencontainers.image.* labels to Dockerfiles 2018-05-14 11:45:32 +01:00
grafanalib add cardinality metric aggregator for elastic search 2019-07-22 12:19:58 +01:00
tools Merge commit '46b8099b5cb2a9d8c97da62fd2a3b409f69292c7' into build-tools-20170728 2017-07-28 14:20:45 +01:00
.coveragerc Generate test coverage report in CI (#111) 2018-02-20 11:34:38 +00:00
.gitignore Save test results on CircleCI 2019-04-15 15:44:09 +00:00
CHANGELOG.rst Add 'diff', 'percent_diff' and 'count_non_null' as RTYPE 2019-06-28 08:36:33 +02:00
COPYING.LGPL-3 license: document that assert.sh is LGPL3 (#138) 2018-07-30 10:25:18 +01:00
LICENSE Initial import 2016-12-01 14:42:05 +00:00
Makefile Move off quay.io 2019-06-03 16:17:59 +00:00
README.rst weave-users mailing list is closed: https://groups.google.com/a/weave.works/forum/#!topic/weave-users/0QXWGOPdBfY 2019-01-07 18:01:00 +05:30
setup.py Release 0.5.3 2018-07-19 17:38:01 +01:00
tox.ini Save test results on CircleCI 2019-04-15 15:44:09 +00:00

==========
grafanalib
==========

.. image:: https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield
    :target: https://circleci.com/gh/weaveworks/grafanalib

Do you like `Grafana <http://grafana.org/>`_ but wish you could version your
dashboard configuration? Do you find yourself repeating common patterns? If
so, grafanalib is for you.

grafanalib lets you generate Grafana dashboards from simple Python scripts.

Writing dashboards
==================

The following will configure a dashboard with a single row, with one QPS graph
broken down by status code and another latency graph showing median and 99th
percentile latency:

.. code-block:: python

  from grafanalib.core import *


  dashboard = Dashboard(
    title="Frontend Stats",
    rows=[
      Row(panels=[
        Graph(
          title="Frontend QPS",
          dataSource='My Prometheus',
          targets=[
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
              legendFormat="1xx",
              refId='A',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
              legendFormat="2xx",
              refId='B',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
              legendFormat="3xx",
              refId='C',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
              legendFormat="4xx",
              refId='D',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
              legendFormat="5xx",
              refId='E',
            ),
          ],
          yAxes=[
            YAxis(format=OPS_FORMAT),
            YAxis(format=SHORT_FORMAT),
          ],
          alert=Alert(
            name="Too many 500s on Nginx",
            message="More than 5 QPS of 500s on Nginx for 5 minutes",
            alertConditions=[
              AlertCondition(
                Target(
                  expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
                  legendFormat="5xx",
                  refId='A',
                ),
                timeRange=TimeRange("5m", "now"),
                evaluator=GreaterThan(5),
                operator=OP_AND,
                reducerType=RTYPE_SUM,
              ),
            ],
          )
        ),
        Graph(
          title="Frontend latency",
          dataSource='My Prometheus',
          targets=[
            Target(
              expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
              legendFormat="0.5 quantile",
              refId='A',
            ),
            Target(
              expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
              legendFormat="0.99 quantile",
              refId='B',
            ),
          ],
          yAxes=single_y_axis(format=SECONDS_FORMAT),
        ),
      ]),
    ],
  ).auto_panel_ids()

There is a fair bit of repetition here, but once you figure out what works for
your needs, you can factor that out.
See `our Weave-specific customizations <grafanalib/weave.py>`_ for inspiration.

Generating dashboards
=====================

If you save the above as ``frontend.dashboard.py`` (the suffix must be
``.dashboard.py``), you can then generate the JSON dashboard with:

.. code-block:: console

  $ generate-dashboard -o frontend.json frontend.dashboard.py

Installation
============

grafanalib is just a Python package, so:

.. code-block:: console

  $ pip install grafanalib

Support
=======

This library is in its very early stages. We'll probably make changes that
break backwards compatibility, although we'll try hard not to.

grafanalib works with Python 2.7, 3.4, 3.5, and 3.6.

Developing
==========
If you're working on the project, and need to build from source, it's done as follows:

.. code-block:: console

  $ virtualenv .env
  $ . ./.env/bin/activate
  $ pip install -e .

`gfdatasource`
==============

This module also provides a script and docker image which can configure grafana
with new sources, or enable app plugins.

The script answers the `--help` with full usage information, but basic
invocation looks like this:

.. code-block:: console

  $ <gfdatasource> --grafana-url http://grafana. datasource --data-source-url http://datasource
  $ <gfdatasource> --grafana-url http://grafana. app --id my-plugin

Getting Help
============

If you have any questions about, feedback for or problems with ``grafanalib``:

- Invite yourself to the `Weave Users Slack <https://slack.weave.works/>`_.
- Ask a question on the `#general <https://weave-community.slack.com/messages/general/>`_ slack channel.
- `File an issue <https://github.com/weaveworks/grafanalib/issues/new>`_.

Your feedback is always welcome!