SigmaHQ/tools/backends.py
Thomas Patzke c8a66e48b6 sigmac: improved Kibana backend
* added fields from rules
* default index if none is matching
2017-09-16 00:39:37 +02:00

441 lines
17 KiB
Python

# Output backends for sigmac
import sys
import json
import re
import sigma
def getBackendList():
"""Return list of backend classes"""
return list(filter(lambda cls: type(cls) == type and issubclass(cls, BaseBackend) and cls.active, [item[1] for item in globals().items()]))
def getBackendDict():
return {cls.identifier: cls for cls in getBackendList() }
def getBackend(name):
try:
return getBackendDict()[name]
except KeyError as e:
raise LookupError("Backend not found") from e
### Output classes
class SingleOutput:
"""
Single file output
By default, this opens the given file or stdin and passes everything into this.
"""
def __init__(self, filename=None):
if type(filename) == str:
self.fd = open(filename, "w")
else:
self.fd = sys.stdout
def print(self, *args, **kwargs):
print(*args, file=self.fd, **kwargs)
def close(self):
self.fd.close()
class MultiOutput:
"""
Multiple file output
Prepares multiple SingleOutput instances with basename + suffix as file names, on for each suffix.
The switch() method is used to switch between these outputs.
This class must be inherited and suffixes must be a dict as follows: file id -> suffix
"""
suffixes = None
def __init__(self, basename):
"""Initializes all outputs with basename and corresponding suffix as SingleOutput object."""
if suffixes == None:
raise NotImplementedError("OutputMulti must be derived, at least suffixes must be set")
if type(basename) != str:
raise TypeError("OutputMulti constructor basename parameter must be string")
self.outputs = dict()
self.output = None
for name, suffix in self.suffixes:
self.outputs[name] = SingleOutput(basename + suffix)
def select(self, name):
"""Select an output as current output"""
self.output = self.outputs[name]
def print(self, *args, **kwargs):
self.output.print(*args, **kwargs)
def close(self):
for out in self.outputs:
out.close()
class StringOutput(SingleOutput):
"""Collect input silently and return resulting string."""
def __init__(self, filename=None):
self.out = ""
def print(self, *args, **kwargs):
try:
del kwargs['file']
except KeyError:
pass
print(*args, file=self, **kwargs)
def write(self, s):
self.out += s
def result(self):
return self.out
def close(self):
pass
### Generic backend base classes
class BaseBackend:
"""Base class for all backends"""
identifier = "base"
active = False
index_field = None # field name that is used to address indices
output_class = None # one of the above output classes
file_list = None
def __init__(self, sigmaconfig, filename=None):
"""
Initialize backend. This gets a sigmaconfig object, which is notified about the used backend class by
passing the object instance to it. Further, output files are initialized by the output class defined in output_class.
"""
if not isinstance(sigmaconfig, (sigma.SigmaConfiguration, None)):
raise TypeError("SigmaConfiguration object expected")
self.sigmaconfig = sigmaconfig
self.sigmaconfig.set_backend(self)
self.output = self.output_class(filename)
def generate(self, sigmaparser):
"""Method is called for each sigma rule and receives the parsed rule (SigmaParser)"""
for parsed in sigmaparser.condparsed:
result = self.generateNode(parsed.parsedSearch)
if parsed.parsedAgg:
result += self.generateAggregation(parsed.parsedAgg)
self.output.print(result)
def generateNode(self, node):
if type(node) == sigma.ConditionAND:
return self.generateANDNode(node)
elif type(node) == sigma.ConditionOR:
return self.generateORNode(node)
elif type(node) == sigma.ConditionNOT:
return self.generateNOTNode(node)
elif type(node) == sigma.NodeSubexpression:
return self.generateSubexpressionNode(node)
elif type(node) == tuple:
return self.generateMapItemNode(node)
elif type(node) in (str, int):
return self.generateValueNode(node)
elif type(node) == list:
return self.generateListNode(node)
else:
raise TypeError("Node type %s was not expected in Sigma parse tree" % (str(type(node))))
def generateANDNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateORNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateNOTNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateSubexpressionNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateListNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateMapItemNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateValueNode(self, node):
raise NotImplementedError("Node type not implemented for this backend")
def generateAggregation(self, agg):
raise NotImplementedError("Aggregations not implemented for this backend")
def finalize(self):
"""
Is called after the last file was processed with generate(). The right place if this backend is not intended to
look isolated at each rule, but generates an output which incorporates multiple rules, e.g. dashboards.
"""
pass
class SingleTextQueryBackend(BaseBackend):
"""Base class for backends that generate one text-based expression from a Sigma rule"""
identifier = "base-textquery"
active = False
output_class = SingleOutput
# the following class variables define the generation and behavior of queries from a parse tree some are prefilled with default values that are quite usual
reEscape = None # match characters that must be quoted
escapeSubst = "\\\\\g<1>" # Substitution that is applied to characters/strings matched for escaping by reEscape
reClear = None # match characters that are cleaned out completely
andToken = None # Token used for linking expressions with logical AND
orToken = None # Same for OR
notToken = None # Same for NOT
subExpression = None # Syntax for subexpressions, usually parenthesis around it. %s is inner expression
listExpression = None # Syntax for lists, %s are list items separated with listSeparator
listSeparator = None # Character for separation of list items
valueExpression = None # Expression of values, %s represents value
mapExpression = None # Syntax for field/value conditions. First %s is key, second is value
mapListsSpecialHandling = False # Same handling for map items with list values as for normal values (strings, integers) if True, generateMapItemListNode method is called with node
mapListValueExpression = None # Syntax for field/value condititons where map value is a list
def cleanValue(self, val):
if self.reEscape:
val = self.reEscape.sub(self.escapeSubst, val)
if self.reClear:
val = self.reClear.sub("", val)
return val
def generateANDNode(self, node):
return self.andToken.join([self.generateNode(val) for val in node])
def generateORNode(self, node):
return self.orToken.join([self.generateNode(val) for val in node])
def generateNOTNode(self, node):
return self.notToken + self.generateNode(node.item)
def generateSubexpressionNode(self, node):
return self.subExpression % self.generateNode(node.items)
def generateListNode(self, node):
if not set([type(value) for value in node]).issubset({str, int}):
raise TypeError("List values must be strings or numbers")
return self.listExpression % (self.listSeparator.join([self.generateNode(value) for value in node]))
def generateMapItemNode(self, node):
key, value = node
if self.mapListsSpecialHandling == False and type(value) in (str, int, list) or self.mapListsSpecialHandling == True and type(value) in (str, int):
return self.mapExpression % (key, self.generateNode(value))
elif type(value) == list:
return self.generateMapItemListNode(key, value)
else:
raise TypeError("Backend does not support map values of type " + str(type(value)))
def generateMapItemListNode(self, key, value):
return self.mapListValueExpression % (key, self.generateNode(value))
def generateValueNode(self, node):
return self.valueExpression % (self.cleanValue(str(node)))
### Backends for specific SIEMs
class ElasticsearchQuerystringBackend(SingleTextQueryBackend):
"""Converts Sigma rule into Elasticsearch query string. Only searches, no aggregations."""
identifier = "es-qs"
active = True
reEscape = re.compile("([+\\-=!(){}\\[\\]^\"~:\\\\/]|&&|\\|\\|)")
reClear = re.compile("[<>]")
andToken = " AND "
orToken = " OR "
notToken = "NOT "
subExpression = "(%s)"
listExpression = "(%s)"
listSeparator = " "
valueExpression = "\"%s\""
mapExpression = "%s:%s"
mapListsSpecialHandling = False
class KibanaBackend(ElasticsearchQuerystringBackend):
"""Converts Sigma rule into Kibana JSON Configuration files (Searches, Visualizations, Dashboards)."""
identifier = "kibana"
active = True
output_class = SingleOutput
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.kibanaconf = list()
self.searches = set()
def generate(self, sigmaparser):
rulename = sigmaparser.parsedyaml["title"].replace(" ", "-")
for parsed in sigmaparser.condparsed:
result = self.generateNode(parsed.parsedSearch)
if rulename in self.searches: # add counter if name collides
cnt = 0
while "%s-%d" % (rulename, cnt) in self.searches:
cnt += 1
rulename = "%s-%d" % (rulename, cnt)
self.searches.add(rulename)
try:
description = sigmaparser.parsedyaml["description"]
except KeyError:
description = ""
columns = list()
try:
for field in sigmaparser.parsedyaml["fields"]:
mapped = sigmaparser.config.get_fieldmapping(field).resolve_fieldname(field)
if type(mapped) == str:
columns.append(mapped)
elif type(mapped) == list:
columns.extend(mapped)
else:
raise TypeError("Field mapping must return string or list")
except KeyError: # no 'fields' attribute
pass
indices = sigmaparser.get_logsource().index
if len(indices) == 0:
indices = ["logstash-*"]
for index in indices:
if len(indices) > 1: # add index names if rule must be replicated because of ambigiuous index patterns
rulename += "-" + indexname
title = "%s (%s)" % (sigmaparser.parsedyaml["title"], index)
else:
title = sigmaparser.parsedyaml["title"]
self.kibanaconf.append({
"_id": rulename,
"_type": "search",
"_source": {
"title": title,
"description": description,
"hits": 0,
"columns": columns,
"sort": ["@timestamp", "desc"],
"version": 1,
"kibanaSavedObjectMeta": {
"searchSourceJSON": json.dumps({
"index": index,
"filter": [],
"highlight": {
"pre_tags": ["@kibana-highlighted-field@"],
"post_tags": ["@/kibana-highlighted-field@"],
"fields": { "*":{} },
"require_field_match": False,
"fragment_size": 2147483647
},
"query": {
"query_string": {
"query": result,
"analyze_wildcard": True
}
}
}
)
}
}
})
def finalize(self):
self.output.print(json.dumps(self.kibanaconf, indent=2))
class LogPointBackend(SingleTextQueryBackend):
"""Converts Sigma rule into LogPoint query"""
identifier = "logpoint"
active = True
reEscape = re.compile('(["\\\\])')
reClear = None
andToken = " "
orToken = " OR "
notToken = " -"
subExpression = "(%s)"
listExpression = "[%s]"
listSeparator = ", "
valueExpression = "\"%s\""
mapExpression = "%s=%s"
mapListsSpecialHandling = True
mapListValueExpression = "%s IN %s"
def generateAggregation(self, agg):
if agg == None:
return ""
if agg.aggfunc == sigma.SigmaAggregationParser.AGGFUNC_NEAR:
raise NotImplementedError("The 'near' aggregation operator is not yet implemented for this backend")
if agg.groupfield == None:
return " | chart %s(%s) as val | search val %s %s" % (agg.aggfunc_notrans, agg.aggfield, agg.cond_op, agg.condition)
else:
return " | chart %s(%s) as val by %s | search val %s %s" % (agg.aggfunc_notrans, agg.aggfield, agg.groupfield, agg.cond_op, agg.condition)
class SplunkBackend(SingleTextQueryBackend):
"""Converts Sigma rule into Splunk Search Processing Language (SPL)."""
identifier = "splunk"
active = True
index_field = "index"
reEscape = re.compile('(["\\\\])')
reClear = None
andToken = " "
orToken = " OR "
notToken = "NOT "
subExpression = "(%s)"
listExpression = "(%s)"
listSeparator = " "
valueExpression = "\"%s\""
mapExpression = "%s=%s"
mapListsSpecialHandling = False
mapListValueExpression = "%s IN %s"
def generateMapItemListNode(self, node):
return "(" + (" OR ".join(['%s=%s' % (key, self.generateValueNode(item)) for item in value])) + ")"
def generateAggregation(self, agg):
if agg == None:
return ""
if agg.aggfunc == sigma.SigmaAggregationParser.AGGFUNC_NEAR:
raise NotImplementedError("The 'near' aggregation operator is not yet implemented for this backend")
if agg.groupfield == None:
return " | stats %s(%s) as val | search val %s %s" % (agg.aggfunc_notrans, agg.aggfield, agg.cond_op, agg.condition)
else:
return " | stats %s(%s) as val by %s | search val %s %s" % (agg.aggfunc_notrans, agg.aggfield, agg.groupfield, agg.cond_op, agg.condition)
### Backends for developement purposes
class FieldnameListBackend(BaseBackend):
"""List all fieldnames from given Sigma rules for creation of a field mapping configuration."""
identifier = "fieldlist"
active = True
output_class = SingleOutput
def generate(self, sigmaparser):
for parsed in sigmaparser.condparsed:
self.output.print("\n".join(sorted(set(list(flatten(self.generateNode(parsed.parsedSearch)))))))
def generateANDNode(self, node):
return [self.generateNode(val) for val in node]
def generateORNode(self, node):
return self.generateANDNode(node)
def generateNOTNode(self, node):
return self.generateNode(node.item)
def generateSubexpressionNode(self, node):
return self.generateNode(node.items)
def generateListNode(self, node):
if not set([type(value) for value in node]).issubset({str, int}):
raise TypeError("List values must be strings or numbers")
return [self.generateNode(value) for value in node]
def generateMapItemNode(self, node):
key, value = node
if type(value) not in (str, int, list):
raise TypeError("Map values must be strings, numbers or lists, not " + str(type(value)))
return [key]
def generateValueNode(self, node):
return []
# Helpers
def flatten(l):
for i in l:
if type(i) == list:
yield from flatten(i)
else:
yield i