SigmaHQ/tools/sigma/backends/limacharlie.py

587 lines
22 KiB
Python
Raw Normal View History

# LimaCharlie backend for sigmac created by LimaCharlie.io
# Copyright 2019 Refraction Point, Inc
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import re
import yaml
from collections import namedtuple
from .base import BaseBackend
from sigma.parser.modifiers.base import SigmaTypeModifier
from sigma.parser.modifiers.type import SigmaRegularExpressionModifier
# A few helper functions for cases where field mapping cannot be done
# as easily one by one, or can be done more efficiently.
def _windowsEventLogFieldName(fieldName):
if 'EventID' == fieldName:
return 'Event/System/EventID'
return 'Event/EventData/%s' % (fieldName,)
def _mapProcessCreationOperations(node):
# Here we fix some common pitfalls found in rules
2019-11-05 13:33:21 +00:00
# in a consistent fashion (already processed to D&R rule).
# First fixup is looking for a specific path prefix
# based on a specific drive letter. There are many cases
# where the driver letter can change or where the early
# boot process refers to it as "\Device\HarddiskVolume1\".
if ("starts with" == node["op"] and
"event/FILE_PATH" == node["path"] and
node["value"].lower().startswith("c:\\")):
node["op"] = "matches"
node["re"] = "^(?:(?:.:)|(?:\\\\Device\\\\HarddiskVolume.))\\\\%s" % (re.escape(node["value"][3:]),)
del(node["value"])
return node
# We support many different log sources so we keep different mapping depending
# on the log source and category.
# The mapping key is product/category/service.
# The mapping value is tuple like:
# - top-level parameters
# - pre-condition is a D&R rule node filtering relevant events.
# - field mappings is a dict with a mapping or a callable to convert the field name.
# Individual mapping values can also be callabled(fieldname, value) returning a new fieldname and value.
# - isAllStringValues is a bool indicating whether all values should be converted to string.
# - keywordField is the field name to alias for keywords if supported or None if not.
# - postOpMapper is a callback that can modify an operation once it has been generated.
SigmaLCConfig = namedtuple('SigmaLCConfig', [
'topLevelParams',
'preConditions',
'fieldMappings',
'isAllStringValues',
'keywordField',
'postOpMapper',
])
_allFieldMappings = {
"windows/process_creation/": SigmaLCConfig(
topLevelParams = {
"events": [
"NEW_PROCESS",
"EXISTING_PROCESS",
]
},
preConditions = {
"op": "is windows",
},
fieldMappings = {
"CommandLine": "event/COMMAND_LINE",
"Image": "event/FILE_PATH",
"ParentImage": "event/PARENT/FILE_PATH",
"ParentCommandLine": "event/PARENT/COMMAND_LINE",
"User": "event/USER_NAME",
# This field is redundant in LC, it seems to always be used with Image
# so we will ignore it.
"OriginalFileName": lambda fn, fv: ("event/FILE_PATH", "*" + fv),
# Custom field names coming from somewhere unknown.
"NewProcessName": "event/FILE_PATH",
"ProcessCommandLine": "event/COMMAND_LINE",
# Another one-off command line.
"Command": "event/COMMAND_LINE",
},
isAllStringValues = False,
keywordField = "event/COMMAND_LINE",
postOpMapper = _mapProcessCreationOperations
),
"windows//": SigmaLCConfig(
topLevelParams = {
"target": "log",
"log type": "wel",
},
preConditions = None,
fieldMappings = _windowsEventLogFieldName,
isAllStringValues = True,
keywordField = None,
postOpMapper = None
),
"windows_defender//": SigmaLCConfig(
topLevelParams = {
"target": "log",
"log type": "wel",
},
preConditions = None,
fieldMappings = _windowsEventLogFieldName,
isAllStringValues = True,
keywordField = None,
postOpMapper = None
),
"dns//": SigmaLCConfig(
topLevelParams = {
"event": "DNS_REQUEST",
},
preConditions = None,
fieldMappings = {
"query": "event/DOMAIN_NAME",
},
isAllStringValues = False,
keywordField = None,
postOpMapper = None
),
"linux//": SigmaLCConfig(
topLevelParams = {
"events": [
"NEW_PROCESS",
"EXISTING_PROCESS",
]
},
preConditions = {
"op": "is linux",
},
fieldMappings = {
"exe": "event/FILE_PATH",
"type": None,
},
isAllStringValues = False,
keywordField = 'event/COMMAND_LINE',
postOpMapper = None
),
"unix//": SigmaLCConfig(
topLevelParams = {
"events": [
"NEW_PROCESS",
"EXISTING_PROCESS",
]
},
preConditions = {
"op": "is linux",
},
fieldMappings = {
"exe": "event/FILE_PATH",
"type": None,
},
isAllStringValues = False,
keywordField = 'event/COMMAND_LINE',
postOpMapper = None
),
"netflow//": SigmaLCConfig(
topLevelParams = {
"event": "NETWORK_CONNECTIONS",
},
preConditions = None,
fieldMappings = {
"destination.port": "event/NETWORK_ACTIVITY/DESTINATION/PORT",
"source.port": "event/NETWORK_ACTIVITY/SOURCE/PORT",
},
isAllStringValues = False,
keywordField = None,
postOpMapper = None
),
}
class LimaCharlieBackend(BaseBackend):
"""Converts Sigma rule into LimaCharlie D&R rules. Contributed by LimaCharlie. https://limacharlie.io"""
identifier = "limacharlie"
active = True
2019-11-03 22:32:50 +00:00
config_required = False
default_config = ["limacharlie"]
def generate(self, sigmaparser):
# Take the log source information and figure out which set of mappings to use.
ruleConfig = sigmaparser.parsedyaml
ls_rule = ruleConfig['logsource']
try:
category = ls_rule['category']
except KeyError:
category = ""
try:
product = ls_rule['product']
except KeyError:
product = ""
# try:
# service = ls_rule['service']
# except KeyError:
# service = ""
2019-10-26 22:37:13 +00:00
# Don't use service for now, most Windows Event Logs
# uses a different service with no category, since we
# treat all Windows Event Logs together we can ignore
# the service.
service = ""
# See if we have a definition for the source combination.
mappingKey = "%s/%s/%s" % (product, category, service)
topFilter, preCond, mappings, isAllStringValues, keywordField, postOpMapper = _allFieldMappings.get(mappingKey, tuple([None, None, None, None, None, None]))
if mappings is None:
raise NotImplementedError("Log source %s/%s/%s not supported by backend." % (product, category, service))
2019-10-26 22:37:13 +00:00
# Field name conversions.
self._fieldMappingInEffect = mappings
2019-10-26 22:37:13 +00:00
# LC event type pre-selector for the type of data.
self._preCondition = preCond
2019-10-26 22:37:13 +00:00
# Are all the values treated as strings?
self._isAllStringValues = isAllStringValues
# Are we supporting keywords full text search?
self._keywordField = keywordField
# Call to fixup all operations after the fact.
self._postOpMapper = postOpMapper
2019-10-26 22:37:13 +00:00
# Call the original generation code.
detectComponent = super().generate(sigmaparser)
2019-10-26 22:37:13 +00:00
# We expect a string (yaml) as output, so if
# we get anything else we assume it's a core
# library value and just return it as-is.
if not isinstance( detectComponent, str):
return detectComponent
# This redundant to deserialize it right after
# generating the yaml, but we try to use the parent
# official class code as much as possible for future
# compatibility.
detectComponent = yaml.safe_load(detectComponent)
# Check that we got a proper node and not just a string
# which we don't really know what to do with.
if not isinstance(detectComponent, dict):
raise NotImplementedError("Selection combination not supported.")
# Apply top level filter.
detectComponent.update(topFilter)
# Now prepare the Response component.
respondComponents = [{
"action": "report",
"name": ruleConfig["title"],
}]
2019-10-26 22:37:13 +00:00
# Add a lot of the metadata available to the report.
if ruleConfig.get("tags", None) is not None:
2019-10-28 16:31:50 +00:00
respondComponents[0].setdefault("metadata", {})["tags"] = ruleConfig["tags"]
if ruleConfig.get("description", None) is not None:
2019-10-28 16:31:50 +00:00
respondComponents[0].setdefault("metadata", {})["description"] = ruleConfig["description"]
if ruleConfig.get("references", None) is not None:
2019-10-28 16:31:50 +00:00
respondComponents[0].setdefault("metadata", {})["references"] = ruleConfig["references"]
if ruleConfig.get("level", None) is not None:
2019-10-28 16:31:50 +00:00
respondComponents[0].setdefault("metadata", {})["level"] = ruleConfig["level"]
if ruleConfig.get("author", None) is not None:
2019-10-28 16:31:50 +00:00
respondComponents[0].setdefault("metadata", {})["author"] = ruleConfig["author"]
2019-10-26 22:37:13 +00:00
# Assemble it all as a single, complete D&R rule.
return yaml.safe_dump({
"detect": detectComponent,
"respond": respondComponents,
})
def generateQuery(self, parsed):
2019-10-26 22:37:13 +00:00
# We override the generateQuery function because
# we generate proper JSON structures internally
# and only convert to string (yaml) once the
# whole thing is assembled.
result = self.generateNode(parsed.parsedSearch)
if self._preCondition is not None:
result = {
"op": "and",
"rules": [
self._preCondition,
result,
]
}
if self._postOpMapper is not None:
result = self._postOpMapper(result)
return yaml.safe_dump(result)
def generateANDNode(self, node):
generated = [ self.generateNode(val) for val in node ]
filtered = [ g for g in generated if g is not None ]
if not filtered:
return None
# Map any possible keywords.
filtered = self._mapKeywordVals(filtered)
if 1 == len(filtered):
if self._postOpMapper is not None:
filtered[0] = self._postOpMapper(filtered[0])
return filtered[0]
result = {
"op": "and",
"rules": filtered,
}
if self._postOpMapper is not None:
result = self._postOpMapper(result)
return result
def generateORNode(self, node):
generated = [self.generateNode(val) for val in node]
filtered = [g for g in generated if g is not None]
if not filtered:
return None
# Map any possible keywords.
filtered = self._mapKeywordVals(filtered)
if 1 == len(filtered):
if self._postOpMapper is not None:
filtered[0] = self._postOpMapper(filtered[0])
return filtered[0]
result = {
"op": "or",
"rules": filtered,
}
if self._postOpMapper is not None:
result = self._postOpMapper(result)
return result
def generateNOTNode(self, node):
generated = self.generateNode(node.item)
if generated is None:
return None
if not isinstance(generated, dict):
raise NotImplementedError("Not operator not available on non-dict nodes.")
generated["not"] = not generated.get("not", False)
return generated
def generateSubexpressionNode(self, node):
return self.generateNode(node.items)
def generateListNode(self, node):
return [self.generateNode(value) for value in node]
def generateMapItemNode(self, node):
fieldname, value = node
fieldNameAndValCallback = None
# The mapping can be a dictionary of mapping or a callable
# to get the correct value.
if callable(self._fieldMappingInEffect):
fieldname = self._fieldMappingInEffect(fieldname)
else:
try:
# The mapping can also be a callable that will
# return a mapped key AND value.
if callable(self._fieldMappingInEffect[fieldname]):
fieldNameAndValCallback = self._fieldMappingInEffect[fieldname]
else:
fieldname = self._fieldMappingInEffect[fieldname]
except:
raise NotImplementedError("Field name %s not supported by backend." % (fieldname,))
# If fieldname returned is None, it's a special case where we
# ignore the node.
if fieldname is None:
return None
if isinstance(value, (int, str)):
if fieldNameAndValCallback is not None:
fieldname, value = fieldNameAndValCallback(fieldname, value)
op, newVal = self._valuePatternToLcOp(value)
newOp = {
"op": op,
"path": fieldname,
"case sensitive": False,
}
if op == "matches":
newOp["re"] = newVal
else:
newOp["value"] = newVal
if self._postOpMapper is not None:
newOp = self._postOpMapper(newOp)
return newOp
elif isinstance(value, list):
subOps = []
for v in value:
if fieldNameAndValCallback is not None:
fieldname, v = fieldNameAndValCallback(fieldname, v)
op, newVal = self._valuePatternToLcOp(v)
newOp = {
"op": op,
"path": fieldname,
"case sensitive": False,
}
if op == "matches":
newOp["re"] = newVal
else:
newOp["value"] = newVal
if self._postOpMapper is not None:
newOp = self._postOpMapper(newOp)
subOps.append(newOp)
if 1 == len(subOps):
return subOps[0]
return {
"op": "or",
"rules": subOps
}
elif isinstance(value, SigmaTypeModifier):
if isinstance(value, SigmaRegularExpressionModifier):
if fieldNameAndValCallback is not None:
fieldname, value = fieldNameAndValCallback(fieldname, value)
result = {
"op": "matches",
"path": fieldname,
"re": re.compile(value),
}
if self._postOpMapper is not None:
result = self._postOpMapper(result)
return result
else:
raise TypeError("Backend does not support TypeModifier: %s" % (str(type(value))))
elif value is None:
if fieldNameAndValCallback is not None:
fieldname, value = fieldNameAndValCallback(fieldname, value)
result = {
"op": "exists",
"not": True,
"path": fieldname,
}
if self._postOpMapper is not None:
result = self._postOpMapper(result)
return result
else:
raise TypeError("Backend does not support map values of type " + str(type(value)))
def generateValueNode(self, node):
return node
def _valuePatternToLcOp(self, val):
2019-10-26 22:37:13 +00:00
# Here we convert the string values supported by Sigma that
# can include wildcards into either proper values (string or int)
# or into altered values to be functionally equivalent using
# a few different LC D&R rule operators.
2019-11-05 13:33:21 +00:00
# No point evaluating non-strings.
if not isinstance(val, str):
return ("is", str(val) if self._isAllStringValues else val)
# Is there any wildcard in this string? If not, we can short circuit.
if "*" not in val and "?" not in val:
return ("is", val)
# Now we do a small optimization for the shortcut operators
2019-11-05 13:33:21 +00:00
# available in LC. We try to see if the wildcards are around
# the main value, but NOT within. If that's the case we can
# use the "starts with", "ends with" or "contains" operators.
isStartsWithWildcard = False
isEndsWithWildcard = False
tmpVal = val
if tmpVal.startswith("*"):
isStartsWithWildcard = True
tmpVal = tmpVal[1:]
if tmpVal.endswith("*") and not (tmpVal.endswith("\\*") and not tmpVal.endswith("\\\\*")):
isEndsWithWildcard = True
if tmpVal.endswith("\\\\*"):
# An extra \ had to be there so it didn't escapte the
# *, but since we plan on removing the *, we can also
# remove one \.
tmpVal = tmpVal[:-2]
else:
tmpVal = tmpVal[:-1]
# Check to see if there are any other wildcards. If there are
# we cannot use our shortcuts.
if "*" not in tmpVal and "?" not in tmpVal:
if isStartsWithWildcard and isEndsWithWildcard:
return ("contains", tmpVal)
if isStartsWithWildcard:
return ("ends with", tmpVal)
if isEndsWithWildcard:
return ("starts with", tmpVal)
# This is messy, but it is accurate in generating a RE based on
# the simplified wildcard system, while also supporting the
# escaping of those wildcards.
segments = []
tmpVal = val
while True:
nEscapes = 0
for i in range(len(tmpVal)):
# We keep a running count of backslash escape
# characters we see so that if we meet a wildcard
# we can tell whether the wildcard is escaped
# (with odd number of escapes) or if it's just a
# backslash literal before a wildcard (even number).
if "\\" == tmpVal[i]:
nEscapes += 1
continue
if "*" == tmpVal[i]:
if 0 == nEscapes:
segments.append(re.escape(tmpVal[:i]))
segments.append(".*")
elif nEscapes % 2 == 0:
segments.append(re.escape(tmpVal[:i - nEscapes]))
segments.append(tmpVal[i - nEscapes:i])
segments.append(".*")
else:
segments.append(re.escape(tmpVal[:i - nEscapes]))
segments.append(tmpVal[i - nEscapes:i + 1])
tmpVal = tmpVal[i + 1:]
break
if "?" == tmpVal[i]:
if 0 == nEscapes:
segments.append(re.escape(tmpVal[:i]))
segments.append(".")
elif nEscapes % 2 == 0:
segments.append(re.escape(tmpVal[:i - nEscapes]))
segments.append(tmpVal[i - nEscapes:i])
segments.append(".")
else:
segments.append(re.escape(tmpVal[:i - nEscapes]))
segments.append(tmpVal[i - nEscapes:i + 1])
tmpVal = tmpVal[i + 1:]
break
nEscapes = 0
else:
segments.append(re.escape(tmpVal))
break
val = ''.join(segments)
return ("matches", val)
def _mapKeywordVals(self, values):
# This function ensures that the list of values passed
# are proper D&R operations, if they are strings it indicates
# they were requested as keyword matches. We only support
2019-11-05 13:33:21 +00:00
# keyword matches when specified in the config. We generally just
# map them to the most common field in LC that makes sense.
mapped = []
for val in values:
2019-11-05 13:33:21 +00:00
# Non-keywords are just passed through.
if not isinstance(val, str):
mapped.append(val)
continue
if self._keywordField is None:
raise NotImplementedError("Full-text keyboard searches not supported.")
# This seems to be indicative only of "keywords" which are mostly
# representative of full-text searches. We don't suport that but
# in some data sources we can alias them to an actual field.
op, newVal = self._valuePatternToLcOp(val)
newOp = {
"op": op,
"path": self._keywordField,
}
if op == "matches":
newOp["re"] = newVal
else:
newOp["value"] = newVal
mapped.append(newOp)
return mapped