fleet/server/live_query/redis_live_query.go
Martin Angers 6c0e56ea73
Address multiple redis-related issues observed with live queries (#16855)
#16331 

Doc updates in a separate PR:
https://github.com/fleetdm/fleet/pull/17214

# Checklist for submitter

- [x] Changes file added for user-visible changes in `changes/` or
`orbit/changes/`.
See [Changes
files](https://fleetdm.com/docs/contributing/committing-changes#changes-files)
for more information.
- [x] Input data is properly validated, `SELECT *` is avoided, SQL
injection is prevented (using placeholders for values in statements)
- [x] Added/updated tests
- [x] Manual QA for all new/changed functionality (smoke-tested locally
with osquery-perf simulating 100 hosts, ran a live query, a saved live
query, stopped naturally and stopped before the end, and again via
fleetctl)

---------

Co-authored-by: Victor Lyuboslavsky <victor@fleetdm.com>
Co-authored-by: Victor Lyuboslavsky <victor.lyuboslavsky@gmail.com>
2024-02-27 19:35:27 -06:00

432 lines
14 KiB
Go

// Package live_query implements an interface for storing and
// retrieving live queries.
//
// # Design
//
// This package operates by storing a single redis key for host
// targeting information. This key has a known prefix, and the data
// is a bitfield representing _all_ the hosts in fleet.
//
// In this model, a live query creation is a few redis writes. While a host
// checkin needs to scan the keys stored in a set representing all active live
// queries, and then fetch the bitfield value for their id. This model fits
// very well with having a lot of hosts and very few live queries.
//
// A contrasting model, for the case of fewer hosts, but a lot of live
// queries, is to have a set per host. In this case, the LQ is pushed
// into each host's set. This model has many potential writes for LQ
// creation, but a host checkin has very few.
//
// We believe that normal fleet usage has many hosts, and a small
// number of live queries targeting all of them. This was a big
// factor in choosing this implementation.
//
// # Implementation
//
// As mentioned in the Design section, there are three keys for each
// live query: the bitfield, the SQL of the query and the set containing
// the IDs of all active live queries:
//
// livequery:<ID> is the bitfield that indicates the hosts
// sql:livequery:<ID> is the SQL of the query.
// livequery:active is the set containing the active live query IDs
//
// Both the bitfield and sql keys have an expiration, and <ID> is the campaign
// ID of the query. To make efficient use of Redis Cluster (without impacting
// standalone Redis), the <ID> is stored in braces (hash tags, e.g.
// livequery:{1} and sql:livequery:{1}), so that the two keys for the same <ID>
// are always stored on the same node (as they hash to the same cluster slot).
// See https://redis.io/topics/cluster-spec#keys-hash-tags for details.
//
// It is a noted downside that the active live queries set will necessarily
// live on a single node in cluster mode (a "hot key"), and that node will see
// increased activity due to that. Should that become a significant problem, an
// alternative approach will be required.
package live_query
import (
"context"
"errors"
"fmt"
"strconv"
"strings"
"time"
"github.com/fleetdm/fleet/v4/server/contexts/ctxerr"
"github.com/fleetdm/fleet/v4/server/datastore/redis"
"github.com/fleetdm/fleet/v4/server/fleet"
redigo "github.com/gomodule/redigo/redis"
)
const (
bitsInByte = 8
queryKeyPrefix = "livequery:"
sqlKeyPrefix = "sql:"
activeQueriesKey = "livequery:active"
queryExpiration = 7 * 24 * time.Hour
)
type redisLiveQuery struct {
// connection pool
pool fleet.RedisPool
}
// NewRedisQueryResults creates a new Redis implementation of the
// QueryResultStore interface using the provided Redis connection pool.
func NewRedisLiveQuery(pool fleet.RedisPool) *redisLiveQuery {
return &redisLiveQuery{pool: pool}
}
// generate keys for the bitfield and sql of a query - those always go in pair
// and should live on the same cluster node when Redis Cluster is used, so
// the common part of the key (the 'name' parameter) is used as key tag.
func generateKeys(name string) (targetsKey, sqlKey string) {
keyTag := "{" + name + "}"
return queryKeyPrefix + keyTag, sqlKeyPrefix + queryKeyPrefix + keyTag
}
// returns the base name part of a target key, i.e. so that this is true:
//
// tkey, _ := generateKeys(name)
// baseName := extractTargetKeyName(tkey)
// baseName == name
func extractTargetKeyName(key string) string {
name := strings.TrimPrefix(key, queryKeyPrefix)
if len(name) > 0 && name[0] == '{' {
name = name[1:]
}
if len(name) > 0 && name[len(name)-1] == '}' {
name = name[:len(name)-1]
}
return name
}
// RunQuery stores the live query information in ephemeral storage for the
// duration of the query or its TTL. Note that hostIDs *must* be sorted
// in ascending order. The name is the campaign ID as a string.
func (r *redisLiveQuery) RunQuery(name, sql string, hostIDs []uint) error {
if len(hostIDs) == 0 {
return errors.New("no hosts targeted")
}
// store the sql and targeted hosts information
if err := r.storeQueryInfo(name, sql, hostIDs); err != nil {
return fmt.Errorf("store query info: %w", err)
}
// store name (campaign id) into the active live queries set
if err := r.storeQueryNames(name); err != nil {
return fmt.Errorf("store query name: %w", err)
}
return nil
}
func (r *redisLiveQuery) StopQuery(name string) error {
// remove the sql and targeted hosts keys
if err := r.removeQueryInfo(name); err != nil {
return fmt.Errorf("remove query info: %w", err)
}
// remove name (campaign id) from the livequery set
if err := r.removeQueryNames(name); err != nil {
return fmt.Errorf("remove query name: %w", err)
}
return nil
}
// this is a variable so it can be changed in tests
var cleanupExpiredQueriesModulo int64 = 10
func (r *redisLiveQuery) QueriesForHost(hostID uint) (map[string]string, error) {
// Get keys for active queries
names, err := r.LoadActiveQueryNames()
if err != nil {
return nil, fmt.Errorf("load active queries: %w", err)
}
// convert the query name (campaign id) to the key name
for i, name := range names {
tkey, _ := generateKeys(name)
names[i] = tkey
}
keysBySlot := redis.SplitKeysBySlot(r.pool, names...)
queries := make(map[string]string)
expired := make(map[string]struct{})
for _, qkeys := range keysBySlot {
if err := r.collectBatchQueriesForHost(hostID, qkeys, queries, expired); err != nil {
return nil, err
}
}
if len(expired) > 0 {
// a certain percentage of the time so that we don't overwhelm redis with a
// bunch of similar deletion commands at the same time, clean up the
// expired queries.
if time.Now().UnixNano()%cleanupExpiredQueriesModulo == 0 {
names := make([]string, 0, len(expired))
for k := range expired {
names = append(names, k)
}
// ignore error, best effort removal
_ = r.removeQueryNames(names...)
}
}
return queries, nil
}
func (r *redisLiveQuery) collectBatchQueriesForHost(hostID uint, queryKeys []string, queriesByHost map[string]string, expiredQueries map[string]struct{}) error {
conn := redis.ReadOnlyConn(r.pool, r.pool.Get())
defer conn.Close()
// Pipeline redis calls to check for this host in the bitfield of the
// targets of the query.
for _, key := range queryKeys {
if err := conn.Send("GETBIT", key, hostID); err != nil {
return fmt.Errorf("getbit query targets: %w", err)
}
// Additionally get SQL even though we don't yet know whether this query
// is targeted to the host. This allows us to avoid an additional
// roundtrip to the Redis server and likely has little cost due to the
// small number of queries and limited size of SQL
if err := conn.Send("GET", sqlKeyPrefix+key); err != nil {
return fmt.Errorf("get query sql: %w", err)
}
}
// Flush calls to begin receiving results.
if err := conn.Flush(); err != nil {
return fmt.Errorf("flush pipeline: %w", err)
}
// Receive target and SQL in order of pipelined calls.
for _, key := range queryKeys {
name := extractTargetKeyName(key)
// the result of GETBIT will not fail if the key does not exist, it will
// just return 0, so it can't be used to detect if the livequery still
// exists.
targeted, err := redigo.Int(conn.Receive())
if err != nil {
return fmt.Errorf("receive target: %w", err)
}
// Be sure to read SQL even if we are not going to include this query.
// Otherwise we will read an incorrect number of returned results from
// the pipeline.
sql, err := redigo.String(conn.Receive())
if err != nil {
if err != redigo.ErrNil {
return fmt.Errorf("receive sql: %w", err)
}
// It is possible the livequery key has expired but was still in the set
// - handle this gracefully by collecting the keys to remove them from
// the set and keep going.
expiredQueries[name] = struct{}{}
continue
}
if targeted == 0 {
// Host not targeted with this query
continue
}
queriesByHost[name] = sql
}
return nil
}
func (r *redisLiveQuery) QueryCompletedByHost(name string, hostID uint) error {
conn := redis.ConfigureDoer(r.pool, r.pool.Get())
defer conn.Close()
targetKey, _ := generateKeys(name)
// Update the bitfield for this host.
if _, err := conn.Do("SETBIT", targetKey, hostID, 0); err != nil {
return fmt.Errorf("setbit query key: %w", err)
}
// NOTE(mna): we could remove the query here if all bits are now off, meaning
// that all hosts have completed this query, but the BITCOUNT command can be
// costly on large strings and we will have quite large ones. This should not be
// needed anyway as StopQuery appears to be called every time a campaign is
// run (see svc.CompleteCampaign).
return nil
}
func (r *redisLiveQuery) storeQueryInfo(name, sql string, hostIDs []uint) error {
conn := r.pool.Get()
defer conn.Close()
// Map the targeted host IDs to a bitfield. Store targets in one key and SQL
// in another.
targetKey, sqlKey := generateKeys(name)
targets := mapBitfield(hostIDs)
// Ensure to set SQL first or else we can end up in a weird state in which a
// client reads that the query exists but cannot look up the SQL.
err := conn.Send("SET", sqlKey, sql, "EX", queryExpiration.Seconds())
if err != nil {
return fmt.Errorf("set sql: %w", err)
}
_, err = conn.Do("SET", targetKey, targets, "EX", queryExpiration.Seconds())
if err != nil {
return fmt.Errorf("set targets: %w", err)
}
return nil
}
func (r *redisLiveQuery) storeQueryNames(names ...string) error {
conn := redis.ConfigureDoer(r.pool, r.pool.Get())
defer conn.Close()
var args redigo.Args
args = args.Add(activeQueriesKey)
args = args.AddFlat(names)
_, err := conn.Do("SADD", args...)
return err
}
func (r *redisLiveQuery) removeQueryInfo(name string) error {
conn := redis.ConfigureDoer(r.pool, r.pool.Get())
defer conn.Close()
targetKey, sqlKey := generateKeys(name)
if _, err := conn.Do("DEL", targetKey, sqlKey); err != nil {
return fmt.Errorf("del query keys: %w", err)
}
return nil
}
func (r *redisLiveQuery) removeQueryNames(names ...string) error {
conn := redis.ConfigureDoer(r.pool, r.pool.Get())
defer conn.Close()
var args redigo.Args
args = args.Add(activeQueriesKey)
args = args.AddFlat(names)
_, err := conn.Do("SREM", args...)
return err
}
func (r *redisLiveQuery) LoadActiveQueryNames() ([]string, error) {
conn := redis.ConfigureDoer(r.pool, r.pool.Get())
defer conn.Close()
names, err := redigo.Strings(conn.Do("SMEMBERS", activeQueriesKey))
if err != nil && err != redigo.ErrNil {
return nil, err
}
return names, nil
}
func (r *redisLiveQuery) CleanupInactiveQueries(ctx context.Context, inactiveCampaignIDs []uint) error {
// the following logic is used to cleanup inactive queries:
// * the inactive campaign IDs are removed from the livequery:active set
//
// At this point, all inactive queries are already effectively deleted - the
// rest is just best effort cleanup to save Redis memory space, but those
// keys would otherwise be ignored and without effect.
//
// * remove the livequery:<ID> and sql:livequery:<ID> for every inactive
// campaign ID.
if len(inactiveCampaignIDs) == 0 {
return nil
}
if err := r.removeInactiveQueries(ctx, inactiveCampaignIDs); err != nil {
return err
}
keysToDel := make([]string, 0, len(inactiveCampaignIDs)*2)
for _, id := range inactiveCampaignIDs {
targetKey, sqlKey := generateKeys(strconv.FormatUint(uint64(id), 10))
keysToDel = append(keysToDel, targetKey, sqlKey)
}
keysBySlot := redis.SplitKeysBySlot(r.pool, keysToDel...)
for _, keys := range keysBySlot {
if err := r.removeBatchInactiveKeys(ctx, keys); err != nil {
return err
}
}
return nil
}
func (r *redisLiveQuery) removeBatchInactiveKeys(ctx context.Context, keys []string) error {
conn := r.pool.Get()
defer conn.Close()
args := redigo.Args{}.AddFlat(keys)
if _, err := conn.Do("DEL", args...); err != nil {
return ctxerr.Wrap(ctx, err, "remove batch of inactive keys")
}
return nil
}
func (r *redisLiveQuery) removeInactiveQueries(ctx context.Context, inactiveCampaignIDs []uint) error {
conn := r.pool.Get()
defer conn.Close()
args := redigo.Args{}.Add(activeQueriesKey).AddFlat(inactiveCampaignIDs)
if _, err := conn.Do("SREM", args...); err != nil {
return ctxerr.Wrap(ctx, err, "remove inactive campaign IDs")
}
return nil
}
// mapBitfield takes the given host IDs and maps them into a bitfield compatible
// with Redis. It is expected that the input IDs are in ascending order.
func mapBitfield(hostIDs []uint) []byte {
if len(hostIDs) == 0 {
return []byte{}
}
// NOTE(mna): note that this is efficient storage if the host IDs are mostly
// sequential and starting from 1, e.g. as in a newly created database. If
// there's substantial churn in hosts (e.g. some are coming on and off) or
// for some reason the auto_increment had to be bumped (e.g. it increments
// with failed inserts, even if there's an "on duplicate" clause), then it
// could get quite inefficient. If the id gets, say, to 10M then the bitfield
// will take over 1MB (10M bytes / 8 bits), regardless of the number of hosts
// - at which point it could start to be more interesting to store a set of
// host IDs (even though the members of a SET are stored as strings so the
// storage bytes depends on the length of the string representation).
//
// Running the following in Redis v6.2.6 (using i+100000 so that IDs reflect
// the high numbers and take the corresponding number of storage bytes):
//
// > eval 'for i=1, 100000 do redis.call("sadd", KEYS[1], i+100000) end' 1 myset
// > memory usage myset
// (integer) 4248715
//
// So it would take a bit under 4MB to store ALL 100K host IDs, obviously
// less to store a subset of those. On the other hand, the large bitfield
// usage of memory would be true even if there was only one host selected in
// the query, should that host be one of the high IDs. Something to keep in
// mind if at some point we have reports of unexpectedly large redis memory
// usage, as that storage is repeated for each live query.
// As the input IDs are in ascending order, we get two optimizations here:
// 1. We can calculate the length of the bitfield necessary by using the
// last ID in the slice. Then we allocate the slice all at once.
// 2. We benefit from accessing the elements of the slice in order,
// potentially making more effective use of the processor cache.
byteLen := hostIDs[len(hostIDs)-1]/bitsInByte + 1
field := make([]byte, byteLen)
for _, id := range hostIDs {
byteIndex := id / bitsInByte
bitIndex := bitsInByte - (id % bitsInByte) - 1
field[byteIndex] |= 1 << bitIndex
}
return field
}