

Fleet
Security Assessment
26.04.2021

Prepared For:
Zach Wasserman | Fleet
zach@fleetdm.com

Prepared By:
Paweł Płatek | Trail of Bits
pawel.platek@trailofbits.com

Alex Useche | Trail of Bits
alex.useche@trailofbits.com

mailto:zach@fleetdm.com
mailto:pawel.platek@trailofbits.com
mailto:alex.useche@trailofbits.com

Executive Summary

Project Dashboard

Code Maturity Evaluation

Engagement Goals

Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Unhandled deferred file close operations
2. Files and directories pre-existence attacks
3. Possible nil pointer dereference
4. Forcing empty passphrase for keys encryption
5. Signature verification in fleetctl commands
6. Redundant online keys in documentation
7. Lack of alerting
8. Key rotation methodology is not documented
9. Threshold and redundant keys
1o. Database compaction function could be called more times than expected
11. All Windows users have read access to Fleet server secret
12. Insufficient documentation of SDDL permissions

A. Vulnerability Classifications

B. Code Maturity Classifications

C. Code Quality Recommendations

D. Semgrep Rule

© 2021 Trail of Bits FleetDM Orbit Assessment | 1

Executive Summary
From 19 April through 23 April 2021, Fleet engaged Trail of Bits to review the security of
Orbit autoupdater. Trail of Bits conducted this assessment over the course of 1
person-weeks with 2 engineers working from the following commits:

● https://github.com/fleetdm/orbit : 5b0020fe
● https://github.com/fleetdm/fleet : 871ba394

The assessment focused on local privilege escalation attack vectors, key management
functionalities, and correctness of usage of the go-tuf library. We applied manual code
review composed with dynamic analysis against a local instance of the system. We also
directed static analysis to detect Go-specific bugs.

The finding with the highest severity could allow local attackers to get read and write access
to Orbit files by tricking users into usage of already existing directories. This could be used,
for example, to interfere with package generation and can result in remote code execution
on clients machines. The other high severity issue is lack of a robust alerting mechanism,
which hampers detection of security incidents. Five other findings are related to the
implementation and documentation of key management functionalities, with the highest
severity issue being lack of key rotation and revocation methodology. Finally, two medium
severity findings concern file permissions on Windows machines.

Issues found indicate that Orbit could use improvements in areas related to key
management, to provide better protection against key compromises, handling of file
permissions, ideally in a centralized manner, and alerting about detected malicious
behaviour. We found no bugs in the usage of the go-tuf library.

We recommend to address all findings presented in this report. Update the Fleet key
management code and documentation to fix the related issues. Enhance code related to
file permissions to make it more centralized and uniform across the codebase. Utilize static
analyzers like gosec or CodeQL to continuously improve security of the application.

© 2021 Trail of Bits FleetDM Orbit Assessment | 2

https://github.com/fleetdm/orbit/tree/5b0020fea44f80a618d23753a3d2a98e1de02d72
https://github.com/fleetdm/fleet/tree/871ba3940dc452cefd38fc47e0edd4d77fba334b

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name Orbit, Fleet

Version 5b0020fe, 871ba394

Type Go

Platforms Linux, Macos, Windows

Dates April 19 through April 23, 2021

Method Whitebox

Consultants Engaged 2

Level of Effort 1 person-week

Total High-Severity Issues 3 ◼◼◼

Total Medium-Severity Issues 4 ◼◼◼◼

Total Low-Severity Issues 2 ◼◼

Total Informational-Severity Issues 3 ◼◼◼

Total Undetermined-Severity Issues 0

Total 12

Access Controls 2 ◼◼

Auditing and Logging 1 ◼

Configuration 1 ◼

Cryptography 3 ◼◼◼

Data Validation 3 ◼◼◼

Undefined Behavior 2 ◼◼

Total 12

© 2021 Trail of Bits FleetDM Orbit Assessment | 3

Engagement Goals
The engagement was scoped to provide a security assessment of the Orbit autoupdater
application, and to verify that it used the go-tuf package in a secure manner.

Specifically, we sought to answer the following questions:

● Is the Orbit application configuring and making use of file systems rights and

permissions in a secure manner in all support operating systems?
● Could the Orbit application be leveraged for local privilege escalation attacks?
● Are there components with potential memory corruption vulnerabilities?
● Do any of the components leak sensitive information through errors or logging

messages?
● Do the components handle sensitive data in a safe and cryptographically secure

manner?
● Can an attacker perform unauthorized operations?
● Are there potential concurrency bugs that could lead to security concerns?
● Does the application use the go-tuf package in a secure manner?
● Is key management secure and are related procedures well documented?

Coverage
To conduct the review, we configured the Fleet server locally, created installation packages
using the Orbit CLI, and installed said packages. We then proceeded to test Orbit
autoupdater dynamically in Windows, Linux, and macOS. At the same time, we conducted
manual static code review of the Orbit codebase and the updates.go file from the Fleet
repository, while leveraging static analysis tools such as CodeQL to aid our review.

We focused on testing against potential file permission issues, and uncovering
vulnerabilities that could lead to local privilege escalation in each operating system
supported by Orbit. Additionally, during our code review we paid close attention to
potential insecure uses of cryptography, inefficient usage of Go concurrency mechanisms
such as channels and anonymous Goroutines, as well as common Go specific bugs and
vulnerabilities. We also review code responsible for key generation and TUF repository
updates, as well as documentation for it. The audit did not cover the security of the go-tuf
library itself, nor the security of communication channels between remote machines.

© 2021 Trail of Bits FleetDM Orbit Assessment | 4

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term
❑ Consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors if it makes
sense. TOB-FLT-001

❑ When using utilities such as os.MkdirAll and ioutil.WriteFile , check all
directories in the path and the final file and validate their owner and permissions
before performing operations on them. This will help prevent situations in which
sensitive information is written to a pre-existing attacker-controlled path. TOB-FLT-002

❑ Add a default branch to the switch statement that will show an error message and
exit. This will prevent application from panic . TOB-FLT-003

❑ Check if there is no keys directory before starting creation of a new repository,
that is at the beginning of the updatesInitFunc function in the
fleet/ee/fleetctl/updates.go file. Abort the procedure otherwise. TOB-FLT-004

❑ Add a new command line argument to the fleetctl command that will enable users
to provide the root public key. Use it for repository validation. Update Fleet
documentation so it instructs users to double check public keys printed by the roots
command. TOB-FLT-005

❑ Rewrite the documentation to require only the timestamp key to be stored in the
online environment. TOB-FLT-006

❑ Implement a notification mechanism for Orbit users, e.g. as a system notifications or
a communication channel like an email. Alert users if a serious security incident is detected,
e.g. an indefinite freeze attack . Print versions of the Orbit and osquery in the Fleet
administration panel - the same versions as used by the go-tuf, not a version reported by
the osquery. TOB-FLT-007

❑ Implement commands in the fleetctl tools that will allow users to easily replace
expired or compromised keys. Make sure that users can renew only selected keys and
don’t have to replace all of them. Add flags that will enable control over keys expiration

© 2021 Trail of Bits FleetDM Orbit Assessment | 5

https://theupdateframework.github.io/specification/latest/#goals-to-protect-against-specific-attacks

times and set secure defaults for these. Do the same for metadata expiration times.
TOB-FLT-008

❑ Extend fleetctl tool with support for customizable thresholds and multiple keys for
a single role. Document how to use this feature. Recommend users to use it for the root
role keys. TOB-FLT-009

❑ Add an additional select case at the beginning of the loop to avoid having to call
the RunValueLogGC in the edge case described above. A potential fix is shown below:
TOB-FLT-010

❑ Restrict read access to all non-admin users to all files under C:\Program
Files\Orbit\ , including the Fleet server secret. TOB-FLT-011

❑ Add additional comments next to each SDDL string used in code describing in
detail the intended permissions and trustees. TOB-FLT-012

© 2021 Trail of Bits FleetDM Orbit Assessment | 6

Long term
❑ Enumerate files and directories and ensure that they have expected permissions
and owners. Build validation to ensure appropriate permissions are applied before their
creation and upon their use. Ideally, this validation should be centrally defined and used
throughout the application. TOB-FLT-002

❑ Use static analyzers to scan the code for possible nil pointer dereferences.
TOB-FLT-003

❑ Verify that keys are protected with non-empty passwords after creating them and
before using them. TOB-FLT-004

❑ Clearly describe which keys should be stored in what type of an environment and
when should be used. For example, create a table with such information. This should help
to prevent misinterpretation of the documentation. TOB-FLT-006

❑ Consider sending a notification from the Orbit client to Fleet server when the
client encounters a failure or spots an attack against him. Create documentation
instructing clients how they should respond to detected security incidents, based on the
type of the error received. TOB-FLT-007

❑ Implement integration with hardware security modules to further increase
security of keys management. Implement notification mechanism that will alert
administrators about expired metadata files. TOB-FLT-008

❑ Consider to use multiple roles keys and thresholds for not-root-role keys.
TOB-FLT-009

❑ Use the Semgrep query in Appendix D to periodically check for and detect this type
of issue. TOB-FLT-010

❑ Create and incorporate unit tests in the CI/CD pipeline that verify that
non-privileged users are not able to read the Fleet server secret, even after changes
are made to the code. TOB-FLT-011

© 2021 Trail of Bits FleetDM Orbit Assessment | 7

Findings Summary

Title Type Severity

1 Unhandled deferred file close operations Undefined
Behavior

Low

2 Files and directories may pre-exist with
too broad permissions

Data Validation High

3 Possible nil pointer dereference Data Validation Informational

4 Forcing empty passphrase for keys
encryption

Cryptography Medium

5 Signature verification in fleetctl
commands

Data Validation High

6 Redundant online keys in documentation Access Controls Medium

7 Lack of alerting mechanism Configuration Medium

8 Key rotation methodology is not
documented

Cryptography Medium

9 Threshold and redundant keys Cryptography Informational

10 Database compaction function could be
called more times than expected

Undefined
Behavior

Informational

11 All Windows users have read access to
Fleet server secret

Access Controls High

12 Insufficient documentation of SDDL
permissions

Auditing and
Logging

Low

© 2021 Trail of Bits FleetDM Orbit Assessment | 8

1. Unhandled deferred file close operations
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-FLT-001
Target: Orbit

Description
Several locations throughout the Orbit codebase defer file close operations after writing to
a file. This may introduce undefined behavior, as the file’s content may not be flushed to
disk until the file is closed.

Errors arising from the inability to flush content to disk while closing will not be caught, and
the application may assume that content was written to disk successfully. See example in
figure 1.1.

Figure 1.1: orbit/pkg/update/filestore/filestore.go, lines 82 – 87 .

Identified occurrences of the bug are:
● orbit/pkg/update/filestore/filestore.go, lines 82 – 87
● orbit/pkg/packaging/linux_shared.go, lines 124 – 128
● orbit/pkg/packaging/macos.go, lines 275 – 279
● orbit/pkg/packaging/packaging.go, lines 62 – 66

Exploit Scenario
The server on which the Orbit application runs has a disk that periodically fails to flush
content due to a hardware failure. As a result, certain methods in the codebase sometimes
fail to write content to disk. This causes undefined behavior.

Recommendation
Short term, consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors if it makes
sense.

References

● "Don't defer Close() on writable files" blogpost

func (s *fileStore) writeData() error {

f, err := os.OpenFile(s.filename, os.O_RDWR|os.O_CREATE, constant.DefaultFileMode)

if err != nil {

return errors.Wrap(err, "open file store")

}

defer f.Close()

© 2021 Trail of Bits FleetDM Orbit Assessment | 9

https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/update/filestore/filestore.go#L82-L87
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/update/filestore/filestore.go#L82-L87
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/linux_shared.go#L124-L128
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/macos.go#L275-L279
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/packaging.go#L62-L66
https://www.joeshaw.org/dont-defer-close-on-writable-files/

2. Files and directories may pre-exist with too broad permissions
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-FLT-002
Target: Orbit, Fleet

Description
Fleet and Orbit applications create certain file and directory paths with specific access
permissions (e.g., 0700) by using the ioutil.WriteFile , os.MkdirAll, os.OpenFile or
similar functions. These functions don’t change permissions of already existing files or
directories and don’t return an error in such situations. This could allow an attacker to
create a file or directory with broad permissions before the Fleet user can create the file or
directory, which could enable the attacker to tamper with the files.

Vulnerabilities occur in the multiple places, for example:

● fleet/ee/fleetctl/updates.go, lines 334 – 336
● fleet/ee/fleetctl/updates.go, line 338
● orbit/pkg/update/update.go, lines 186 – 190
● orbit/cmd/orbit/orbit.go, line 116
● orbit/pkg/packaging/packaging.go, lines 58 – 60

Please note that the go-tuf library may also contain bugs of this type.

Exploit Scenario
An attacker has unprivileged access to the machine on which a client uses Fleet. He creates
new, empty directories - keys and repository - with 0777 permissions in a directory where
the Fleet user will initialize a new repository. The user executes fleetctl updates init
command. The directories remain owned by the low-privileged user and have 0777
permissions. The attacker removes files generated by the user and replaces them with his
own. The user publishes the modified repository, creates the Orbit installation package and
distributes it to clients. Clients execute the attacker's files.

Recommendation
Short term, when using utilities such as os.MkdirAll and ioutil.WriteFile , check all
directories in the path and the final file and validate their owner and permissions before
performing operations on them. This will help prevent situations in which sensitive
information is written to a pre-existing attacker-controlled path.

Long term, enumerate files and directories and ensure that they have expected
permissions and owners. Build validation to ensure appropriate permissions are applied
before their creation and upon their use. Ideally, this validation should be centrally defined
and used throughout the application.

© 2021 Trail of Bits FleetDM Orbit Assessment | 10

https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/ee/fleetctl/updates.go#L334-L336
https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/ee/fleetctl/updates.go#L338
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/update/update.go#L186-L190
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/cmd/orbit/orbit.go#L116
https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/packaging.go#L58-L60

3. Possible nil pointer dereference
Severity: Informational Difficulty: N/A
Type: Data Validation Finding ID: TOB-FLT-003
Target: orbit/pkg/packaging/macos.go

Description
The Orbit packaging utility panics when run on an unsupported machine, that is on neither
darwin nor linux . The bug occurs because there is no default handler in a switch
statement over runtime.GOOS variable, as presented in figure 3.1.

Figure 3.1: orbit/pkg/packaging/macos.go, lines 230 – 236 .

Recommendation
Short term, add a default branch to the switch statement that will show an error message
and exit. This will prevent application from panic .

Long term, use static analyzers to scan the code for possible nil pointer dereferences.

// Make bom

var cmdMkbom *exec.Cmd

switch runtime.GOOS {

case "darwin" :

cmdMkbom = exec.Command("mkbom" , filepath.Join(rootPath, "root"),

filepath.Join("flat" , "base.pkg" , "Bom"))

case "linux" :

cmdMkbom = exec.Command("mkbom" , "-u" , "0" , "-g" , "80" , filepath.Join(rootPath,

"flat" , "root"), filepath.Join("flat" , "base.pkg" , "Bom"))

}

cmdMkbom.Dir = rootPath

© 2021 Trail of Bits FleetDM Orbit Assessment | 11

https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/macos.go#L230-L236

4. Forcing empty passphrase for keys encryption
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-FLT-004
Target: fleet/ee/fleetctl/updates.go

Description
When initializing a new repository, already existing keys will be read and appended to the
newly created one. Since the old keys could be created by an attacker, it opens a door for
manipulation. Moreover, if the old keys are stored in encrypted form and the encryption
passphrase is an empty string, the new key will also be encrypted with an empty password,
even if the FLEET_*_PASSPHRASE environment variables were set.

The Fleet code tries to detect if no repository exists at the path where a new one should be
created - see figure 4.1. It does so by looking for repository and staged directories.
However, it does not consider a keys directory to be an indication of repository existence.
In fact, it reads the old keys and appends them to the generated one, as can be seen in
figure 4.2. This behaviour is not a vulnerability by itself, because only the new key will be
used in the repository/root.json:roles/root/keyids field. Although, it may cause
confusion in the system and introduce new attack vectors.

Figure 4.1: fleet/ee/fleetctl/updates.go, lines 84 – 90 .

Figure 4.2: go-tuf/blob/master/local_store.go, lines 327 – 332 .

For example, an exploitable vector is a key’s passphrase overwriting. If an attacker creates
keys encrypted with an empty password, saves them in the keys directory and the user
initializes the repository using these keys, the Orbit will encrypt the newly generated key
with the empty password - not the one set in environment variables. That's because the

meta, err := store.GetMeta()

if err != nil {

return errors.Wrap(err, "get repo meta")

}

if len (meta) != 0 {

return errors.Errorf("repo already initialized: %s" , path)

}

// add the key to the existing keys (if any)

keys, pass, err := f.loadKeys(role)

if err != nil && !os.IsNotExist(err) {

return err

}

keys = append (keys, key)

© 2021 Trail of Bits FleetDM Orbit Assessment | 12

https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/ee/fleetctl/updates.go#L84-L90
https://github.com/theupdateframework/go-tuf/blob/master/local_store.go#L327-L332

go-tuf tries to decrypt files using the empty password firstly, and only if the decryption
fails it will try to read the passphrase, as presented in figure 4.3.

Figure 4.3: go-tuf/blob/master/local_store.go, lines 404 – 415 .

Exploit Scenario
An attacker creates a malicious keys/root.json file, similar to the one presented in figure
4.4, in a directory where the Fleet user will create a new repository. The user executes
fleetctl updates init command. New keys are generated, encrypted with an empty
password, and saved. The attacker later intercepts the new root.json file, decrypts it and
attacks Fleet clients.

// try the empty string as the password first

pass := [] byte ("")

if err := encrypted.Unmarshal(pk.Data, &keys, pass); err != nil {

pass, err = f.passphraseFunc(role, false)

if err != nil {

return nil , nil , err

}

if err = encrypted.Unmarshal(pk.Data, &keys, pass); err != nil {

return nil , nil , err

}

}

return keys, pass, nil

{

"encrypted" : true ,

"data" : {

"kdf" : {

"name" : "scrypt" ,

"params" : {

"N" : 32768 ,

"r" : 8 ,

"p" : 1

},

"salt" : "2hsBqebwy2sSsyPjHwzRoChqS5s3AdiWgaqwtGpt04A="

},

"cipher" : {

"name" : "nacl/secretbox" ,

"nonce" : "WMsoB13Q4cv92MKpYsvFk0vaFW5pEvyN"

},

"ciphertext" :

"GUd2nqP+RPuROr3JaakceIY+sGTmiMVbOfgPU/9R5h0gLHns03l8vjsjzEG8eCXOrnJVvnQ9lwxPrn957neqtqQQdel

pcn8buArb7z7G54SHGVTnNWSzgBlqy1vgCnVicplnsy8L8ufXg8xBa/cg6xmy4SDPHJ/UWJpqCxdvCJ6IrbkXBXHTw1f

Lb9emvAwdOd+2F9gGmIU2HiClQQ7HacU4k9ZS+wBdF5Q94bY398dq06sIHPBmWUz9b+AWJ1VONuvgfNHcKH4iiqI3vma

2fRjtvN4qhQalZoBEsC+nm9U28aC4PW9xPg0f12Z7GG7lYeH8p40Zj147WRswPQlhwQhTqn8tQrUBvg2RXW6cNlqWuS2

6/ewUg1vy+BXa4pf9XIndAcyiCNL66gLcsuEkgBz3LCtACmJ3gjAMxRSomTAm6skmebGtrKdEZb/02xtmiu9X/vFQ/TJ

© 2021 Trail of Bits FleetDM Orbit Assessment | 13

https://github.com/theupdateframework/go-tuf/blob/master/local_store.go#L404-L415

Figure 4.4: an example root.json file encrypted with an empty password.

Recommendation
Short term, check if there is no keys directory before starting creation of a new repository,
that is at the beginning of the updatesInitFunc function in the fleet/ee/fleetctl/updates.go
file. Abort the procedure otherwise.

Long term, verify that keys are protected with non-empty passwords after creating them
and before using them.

eBe57G9uf2XceboG3lptzKfBo8S6O6XiTp4ZvLzdm"

}

}

© 2021 Trail of Bits FleetDM Orbit Assessment | 14

5. Signature verification in �leetctl commands
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-FLT-005
Target: fleet/ee/fleetctl/updates.go

Description
If Fleet updates commands are executed from a malicious repository, then an attacker may
force the user to read and sign his files, effectively compromising keys. That's because the
user has no way to establish a root of trust - he lacks knowledge about the root public key.

The fleetctl updates add and fleetctl updates timestamp commands open the
repository located in the current working directory or specified by the --path argument.
They do not verify signatures of files in the repository. So an attacker with write access to
the files - but without access to the private keys - can write arbitrary content to the files and
these will be signed by the Fleet user. To protect against such attacks, the fleetctl may
require users to provide a root public key e.g, as the command line parameter and use it to
verify content of the repository prior to updating it.

The fleetctl updates roots command, which prints the root public key, could be
additionally protected by out-of-band verification of its output. For example, users should
be instructed to compute a hash of the printed public key and compare it with the
expected root key ID, e.g. the one printed after repository initialization. If a repository
initialization takes place after a long time from the roots command execution, users
should be asked to securely store the ID, e.g. in their password manager or in a file with
restricted access. To enable users to correctly compute an ID from a printed public key,
default json encoder used in the updatesRootsFunc function should be replaced with the
github.com/tent/canonical-json-go encoder used by the go-tuf library - see figure 5.1.

Figure 5.1: fleet/ee/fleetctl/updates.go, lines 157 – 173 .

Exploit Scenario
Attacker gets access to a local repository. He replaces the hash of the orbit binary in the
targets.json file and waits. The Fleet user stages updates for the osqueryd binary - replaces

func updatesRootsFunc(c *cli.Context) error {

[redacted]

if err := json.NewEncoder (os.Stdout).Encode(keys); err != nil {

return errors.Wrap(err, "encode root metadata")

}

return nil

}

© 2021 Trail of Bits FleetDM Orbit Assessment | 15

https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/ee/fleetctl/updates.go#L157-L173

the old binary with a new one, updates hashes and other data in repository files, and signs
them. Signed target.json file contains the correct hash of the osqueryd , but an incorrect,
attacker controlled hash of the orbit . After that, the attacker replaces the orbit file with
his malware and waits until the Fleet user publishes the updated repository.

Recommendation
Short term, add a new command line argument to the fleetctl command that will enable
users to provide the root public key. Use it for repository validation. Update Fleet
documentation so it instructs users to double check public keys printed by the roots
command.

<Long term recommendation>

References

● <Any references>

© 2021 Trail of Bits FleetDM Orbit Assessment | 16

6. Redundant online keys in documentation
Severity: Medium Difficulty: High
Type: Access Controls Finding ID: TOB-FLT-006
Target: fleetctl documentation

Description
Fleet documentation states that both snapshot and timestamp keys should be stored in
the online environment for the update timestamp operation. However, the snapshot key is
not required for the operation and it should be kept in the more secure, offline
environment.

The documentation is located in the 4-fleetctl-agent-updates.md file and can be seen in the
figure 6.1. The TUF specification states that only the timestamp key should be stored in the
online environment - see figure 6.2. Please note that the TUF faq , section 5. Which roles
can use online keys? states that “The Timestamp and Snapshot roles can use online
keys”, but this is not recommended setup in the Orbit context.

Figure 6.1: fleet/docs/2-Deployment/4-fleetctl-agent-updates.md#update-timestamp .

Figure 6.2: The Update Framework - 6.1. Key management and migration .

Moreover, the Initialize the repository section in the documentation - presented in figure
6.3 - may be misinterpreted by users so that they may assume that only the root key
should be stored only in an offline environment, whereas also snapshot and target keys
should use such protection.

© 2021 Trail of Bits FleetDM Orbit Assessment | 17

https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/docs/2-Deployment/4-fleetctl-agent-updates.md#update-timestamp
https://theupdateframework.io/faq/
https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/docs/2-Deployment/4-fleetctl-agent-updates.md#update-timestamp
https://theupdateframework.github.io/specification/latest/#key-management-and-migration
https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/docs/2-Deployment/4-fleetctl-agent-updates.md#initialize-the-repository

Exploit Scenario
An attacker compromises the online environment and steals snapshot and timestamp
keys. He performs a mix-and-match attack, forcing users to downgrade the osqueryd file.
He can now exploit vulnerabilities existing in the old version of the application.

Recommendation
Short term, rewrite the documentation to require only the timestamp key to be stored in
the online environment.

Long term, clearly describe which keys should be stored in what type of an environment
and when should be used. For example, create a table with such information. This should
help to prevent misinterpretation of the documentation.

© 2021 Trail of Bits FleetDM Orbit Assessment | 18

https://theupdateframework.github.io/specification/latest/#snapshot

7. Lack of alerting mechanism
Severity: High Difficulty: Medium
Type: Configuration Finding ID: TOB-FLT-007
Target: Orbit, Fleet

Description
Thanks to The Update Framework, Orbit can detect various attacks, resulting from e.g.
remote repository or a key compromise. However, it does not alert a client sufficiently
about such security incidents nor does inform the Fleet server.

The only way for a client to notice that his Orbit application is not functioning properly is to
periodically scan a log file generated by the application, for example
/var/log/orbit/orbit.stderr.log.

The Fleet server does not receive any information about errors from the Orbit. It can’t
detect if enrolled clients are attacked. It also doesn’t report versions of the Orbit used by
clients.

Exploit Scenario 1
Attacker finds a weakness in the Orbit and exploits it to downgrade Orbit running on
clients’ machines. Exploits the downgraded version using a more severe attack. Neither
Fleet administrators nor clients are aware about the attack.

Exploit Scenario 2
Attacker compromises the remote repository. He stops publishing new updates. Clients are
running an outdated, vulnerable version of the Orbit and are not aware of this fact.

Recommendation
Short term, implement a notification mechanism for Orbit users, e.g. as a system
notifications or a communication channel like an email. Alert users if a serious security
incident is detected, e.g. an indefinite freeze attack . Print versions of the Orbit and osquery
in the Fleet administration panel - the same versions as used by the go-tuf, not a version
reported by the osquery.

Long term, consider sending a notification from the Orbit client to Fleet server when the
client encounters a failure or spots an attack against him. Create documentation
instructing clients how they should respond to detected security incidents, based on the
type of the error received.

© 2021 Trail of Bits FleetDM Orbit Assessment | 19

https://theupdateframework.github.io/specification/latest/#goals-to-protect-against-specific-attacks

8. Key rotation methodology is not documented
Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-FLT-008
Target: fleetctl

Description
One of the goals of The Update Framework is that “all keys must be easily and safely
revocable. Trusting new keys for a role must be easy”. However, the Fleet documentation
does not provide information about how to safely rotate expired keys or revoke
compromised ones.

Keeping Fleet administrators rotating keys means that a technology and policy is in place to
distribute new and old keys, and that they know how to handle the situation if keys are
compromised. The opposite - not having keys rotation trained - could delay administrators'
response time in case of a security breach and increase the period of clients being
vulnerable to attacks.

Based on the NIST’s “Recommendation for Key Management” publication, section 5.3.
Cryptoperiods , Google’s guide , and AWS’s guide - with a note that the two later guides
refer to symmetric keys - we recommend to set key expiration times between 1 to 3 years.
The exact time should be configurable by end users, depending on the specific
requirements and capabilities, e.g. availability of a secure environment. Moreover, the
rotation period should be adjusted to comprehend thresholds and redundant keys - see
finding TOB-FLT-009 .

Based on the TUF faq , section 8. How often should metadata expire? , Uptane’s best
practices recommendations , and Notary recommendations , we recommend to set
timestamp metadata expiration to a short time period, e.g. 1 day - this should ensure that
clients are not running outdated applications longer than a day. For the rest metadata files,
we recommend setting a longer period, between 1 to 3 years. The root metadata may have
longer expiration time than the storage and target files. The storage metadata may have
a shorter validity period, to protect against scenarios when timestamp key and remote
repository are both compromised. The metadata expiration times should depend on the
client-specific keys storage setup and should be correlated with the cryptoperiods of the
corresponding keys. Especially, all expiration times should be less than or equal to the root
keys cryptoperiod.

Exploit Scenario
An attacker compromises some of the Fleet keys. Administrators learn about this fact and
try to revoke the keys. They have no instruction how to do that, so the operation is delayed.
The attacker has enough time to compromise clients and install a persistent backdoor.

© 2021 Trail of Bits FleetDM Orbit Assessment | 20

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://cloud.google.com/kms/docs/key-rotation#how_often_to_rotate_keys
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://theupdateframework.io/faq/
https://uptane.github.io/deployment-considerations/key_management.html#metadata-expiration-times
https://uptane.github.io/deployment-considerations/key_management.html#metadata-expiration-times
https://github.com/theupdateframework/notary/blob/master/docs/best_practices.md#expiration-prevention

Recommendation
Short term, implement commands in the fleetctl tools that will allow users to easily
replace expired or compromised keys. Make sure that users can renew only selected keys
and don’t have to replace all of them. Add flags that will enable control over keys expiration
times and set secure defaults for these. Do the same for metadata expiration times.

Long term, implement integration with hardware security modules to further increase
security of keys management. Implement notification mechanism that will alert
administrators about expired metadata files.

© 2021 Trail of Bits FleetDM Orbit Assessment | 21

9. Threshold and redundant keys
Severity: Informational Difficulty: N/A
Type: Cryptography Finding ID: TOB-FLT-009
Target: Orbit, Fleet

Description
The Update Framework supports roles with multiple (redundant) keys and a threshold
trust. These features can be leveraged for additional protection of the keys.

For example, instead of a single root key replicated to a multiple locations , multiple keys
can be generated and distributed across different USB drives (or other devices) and the
Orbit can be instructed to trust any one of these. Such setup should be useful when
recovering from keys compromise - if only some of the keys were identified to be stolen by
attackers, the still-trustfull can be leveraged to reestablish the trust. However, such a
feature is probably not supported by the TUF. This setup will also make it easier to detect
which device was compromised when one of the keys was noticed to be used maliciously.

The threshold feature can be used to further increase the security. For example, at least
two root keys may be required in the signing process. Now both can be stored on separate
devices and compromising one of them won’t be enough for an attacker to attack the
system. Combining this future with redundant keys will allow the implementation of the
M-of-N scheme (similar to a secret sharing algorithms): there are N valid keys and M of
these are required to meet the threshold. This gives both protection against a single device
compromise and backup keys.

Other keys than the for the root role also can benefit from redundancy and the threshold.
For example, the timestamp role may require two keys and the keys can now be retrieved
from two places e.g., from a database and an environment variable.

Recommendation
Short term, extend fleetctl tool with support for customizable thresholds and multiple keys
for a single role. Document how to use this feature. Recommend users to use it for the root
role keys.

Long term, consider to use multiple roles keys and thresholds for not-root-role keys.

© 2021 Trail of Bits FleetDM Orbit Assessment | 22

https://github.com/fleetdm/fleet/blob/871ba3940dc452cefd38fc47e0edd4d77fba334b/docs/2-Deployment/4-fleetctl-agent-updates.md#initialize-the-repository

10. Database compaction function could be called more times than
expected
Severity: Informational Difficulty: N/A
Type: Undefined Behavior Finding ID: TOB-FLT-010
Target: Orbit

Description
The orbit application created a background loop to call the compaction method for
BadgerDB. In some edge cases, the way this logic was configured could result in more calls
to RunValueLogGC than expected.

In the code below, if the closeChan is written to at the same time as the ticker executes,
then it would up to the Go scheduler to randomly pick a case to select. As a result, it may
choose to run b.DB.RunValueLogGC(compactionDiscardRatio) one extra time
unnecessarily instead of exiting the loop. While this may not result in any specific issues,
this could result in undefined behavior in the future as the code base is further developed.

Figure 10.1: orbit/pkg/database/database.go, lines 50 – 64 .

Recommendation
Short term, add an additional select case at the beginning of the loop to avoid having to call
the RunValueLogGC in the edge case described above. A potential fix is shown below:

go func () {

ticker := time.NewTicker(compactionInterval)

defer ticker.Stop()

for {

select {

case <-b.closeChan:

return

case <-ticker.C:

if err := b.DB.RunValueLogGC(compactionDiscardRatio); err != nil &&

!errors.Is(err, badger.ErrNoRewrite) {

log.Error().Err(err).Msg("compact badger")

}

}

}

}()

for {

 // handle cases where both ticker.C and closeChan are written to at the same time

 select {

 case <-b.closeChan:

© 2021 Trail of Bits FleetDM Orbit Assessment | 23

https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/database/database.go#L50-L64

Figure 10.2: Potential fix to avoid potential extra call to RunValueLogGC.

Long term, use the Semgrep query in Appendix D to periodically check for and detect this
type of issue.

 return

 default : // we add default here so that the select doesn't block

 }

 if err := b.DB.RunValueLogGC(compactionDiscardRatio); err != nil && !errors.Is(err,

badger.ErrNoRewrite) {

 Log.Error().Err(err).Msg("compact badger")

 }

 select {

 case <-b.closeChan:

 return

 case <-ticker.C:

}

© 2021 Trail of Bits FleetDM Orbit Assessment | 24

11. All Windows users have read access to Fleet server secret
Severity: High Difficulty: Medium
Type: Access Controls Finding ID: TOB-FLT-011
Target: Orbit

Description
After installation of the orbit package on Windows machines, the installer stores the
enrollment secret in c:\Program Files\Orbit\secret.txt . This secret is readable by
anyone with a standard Windows user account in the machine. This is inconsistent with
macOS and Linux, where non-root users do not have read access to the secret. This
appeared to be due to insufficient restrictions applied by the Security Descriptor Definition
Language (SDDL) strings used to configure access rights in Windows hosts.

Figure 11.1: The secret was readable by the user that installed orbit through the msi installer.

Figure 11.2: The secret was readable by another user without administrator rights with access to
the same machine.

Exploit Scenario
An attacker with local access to the file system where the Orbit data is stored reads the
secret.txt file. He then exploits a flaw in the system breaking connection between the
original osquery and a Fleet server. He uses the secret to enroll in the Fleet server. The
server is connected to a malicious, fake osquery. Attacker responds with untrue data for
Fleets osquery requests without the Fleet noticing.

Recommendation

© 2021 Trail of Bits FleetDM Orbit Assessment | 25

Short term, restrict read access to all non-admin users to all files under C:\Program
Files\Orbit\ , including the Fleet server secret.

Long term, create and incorporate unit tests in the CI/CD pipeline that verify that
non-privileged users are not able to read the Fleet server secret, even after changes are
made to the code.

© 2021 Trail of Bits FleetDM Orbit Assessment | 26

12. Insu�ficient documentation of SDDL permissions
Severity: Low Difficulty: Medium
Type: Auditing and Logging Finding ID: TOB-FLT-012
Target: Orbit

Description
The Orbit source code relied on SDDL strings to configure file permissions for Orbit files
installed in Windows computers through the MSI package. SDDL strings are unintuitive and
complex, and their complicated syntax can make it easy for developers to create invalid or
incorrect permissions when updating them. However, very few details were provided in
the documentation or code comments in regard to the intent of the SDDL strings used in
the code.

Figure 12.1: orbit/pkg/packaging/wix/transform.go, lines 80 – 99.

Exploit Scenario
A developer needs to make a change to the SDDL strings and, given the lack of sufficient
documentation on the intended permissions configured through the SDDL strings, they
mistakenly grant users more access than necessary to sensitive files such as the Fleet
server secret.

Recommendation
Short term, add additional comments next to each SDDL string used in code describing in
detail the intended permissions and trustees.

if cur.XMLName.Local == "File" {

 // This SDDL copied directly from osqueryd.exe after a regular

 // osquery MSI install. We assume that osquery is getting the

 // permissions correct and use exactly the same for our files.

 // Using this cryptic string seems to be the only way to disable

 // permission inheritance in a WiX package, so we may not have

 // any option for something more readable.

 sddl := "O:SYG:SYD:P(A;OICI;FA;;;SY)(A;OICI;FA;;;BA)(A;OICI;0x1200a9;;;BU)"

 if cur.Attrs.Get("Name") == "secret.txt" {

 // This SDDL copied from properly configured file on a Windows

 // 10 machine. Permissions are same as below but with read

 // access removed for regular users.

 sddl = "O:SYG:SYD:PAI(A;;FA;;;SY)(A;;FA;;;BA)"

 }

 cur.Children = append (cur.Children, xmlNode(

 "PermissionEx" ,

 xmlAttr("Sddl" , sddl),

))

}

© 2021 Trail of Bits FleetDM Orbit Assessment | 27

https://github.com/fleetdm/orbit/blob/5b0020fea44f80a618d23753a3d2a98e1de02d72/pkg/packaging/wix/transform.go#L80-L99

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Testing Related to test methodology or test coverage

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

© 2021 Trail of Bits FleetDM Orbit Assessment | 28

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2021 Trail of Bits FleetDM Orbit Assessment | 29

B. Code Maturity Classifications

Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

© 2021 Trail of Bits FleetDM Orbit Assessment | 30

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

© 2021 Trail of Bits FleetDM Orbit Assessment | 31

C. Code Quality Recommendations

Usage of IsNotExist

There were two instances where the function IsNotExist was used to check whether a file or
path existed. Per the Go documentation , new code should use errors.Is(err,
os.ErrNotExist) for the same purposes. The two instance are listed below

Figure C.1: /orbit/pkg/update/update.go#L230-L232

Figure C.2: /orbit/pkg/update/filestore/filestore.go#L57-L63

Unchecked type assertion

The following code performs a type assertion without validating its correctness. if
http.DefaultTransport.(*http.Transport) returns nil, false for the assertion,
Clone() is called on a nil pointer, which causes a panic .

Figure C.3: /orbit/pkg/update/update.go#L61-L62

 if err := os. Rename (localPath, localPath+ ".old"); err != nil && !os. IsNotExist (err) {
 return errors. Wrap (err, "rename old")
 }

 if err != nil && !os. IsNotExist (err) {
 return errors. Wrap (err, "stat file store")
 } else if os. IsNotExist (err) {
 // initialize empty
 s.metadata = metadataMap{}
 return nil
 }

func New (opt Options) (*Updater, error) {
 transport := http.DefaultTransport.(*http.Transport). Clone ()

© 2021 Trail of Bits FleetDM Orbit Assessment | 32

https://golang.org/pkg/os/#IsNotExist
https://github.com/fleetdm/orbit/blob/main/pkg/update/update.go#L230-L232
https://github.com/fleetdm/orbit/blob/main/pkg/update/filestore/filestore.go#L57-L63
https://github.com/fleetdm/orbit/blob/main/pkg/update/update.go#L61-L62

D. Semgrep rule to detect redundant Go channel selection
The following Semgrep rule can be used to detect instances of the bug described in
TOB-FLT-010 .

Figure D.1: Semgrep Rule.

rules :

- id : undeterministic-function-execution

 patterns :

 - pattern-either :

 - pattern : |

 $TICKER := time.NewTicker(...)

 ...

 for {

 ...

 select {

 case <-$DONECHAN: return

 case <-ticker.C: ...

 }

 }

 - pattern-not : |

 $TICKER := time.NewTicker(...)

 ...

 for {

 select {

 case <-$DONECHAN: return

 default:

 }

 ...

 select {

 case <-$DONECHAN: return

 case <-$TICKER.C: ...

 }

 }

 message : Logic executed as a result of ticker $TICKER may execute more times than desired

when both channels are written to at the same time

 severity : WARNING

 languages : [go]

© 2021 Trail of Bits FleetDM Orbit Assessment | 33

